" AD-A149 140 RESERRCH INTO SELF TIHED VLSI CIRCUITS(U) PRINCETON
UNIY NJ DEPT OF ELECTRICAL ENGINEERING AND COMPUTER

SCIENCE R J LIPTON 22 OCT 84 N@8014-82-K-08549
UNCLASSIFIED F/G 9/5

Lot miasn e ocat i

R I A A O G dC B 0 -

el N T I TR R TR

10 % 2

““IE E :if‘ fl22
L 4

m" T =

= [l

22 s s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

)

it W At gN

-

L4

......

At S S S 4 A DR Tt e A ARSI &r- et ey

o
<
L PRINCETON VLSI PROJECT: Semi-Annual Report
N
<
F
< PERIOD ENDING: October 22, 1984
)
Richard J. Lipton -- Principal Investigator
EECS Department
PRINCETON UNIVERSITY
Title: Research into Self-Timed VLSI Circuits
contract N00014~82-K-0549
FACULTY:
Bruce W, Arden, Chairmanp
David P. Dobkin
Hector Garcia-Molina . ‘ -
Peter Honeyman DTl C
Andrea LaPaugh
Kenneth Steiglitz ELECTE
Kenneth Supowit A
P DEC 3 1 1984
\
ol

i

F‘W‘T."“" CRAa R e W S Il R, S M Sl A S S "R e "R i e N S P S S S Jaats S et S % Bl DRt be My 2 I

Princeton VLSI Project

B. Arden, D. Dobkin, H. Garcia-AMolina, P. Honeyman
A. LaPaugh, R. Lipton, K. Steiglitz, K. Supoust

1. Introduction

There are three major components to our project. The first is in the area of procedural
design of VLSI circuits. The second is our census language and techniques, and the third is
in the area of the testing of VLSI circuits.

2. Procedural Approach to VLSI Design

2.1. ALLENDE [LaPaugh, Mata, Heng, Lin, Yeh]

ALLENDE is a new language for VLSI design based on our earlier work on ALl and
Clay. Several new ideas have been introduced to make it both easier to use and more
efficient. First, a layout is constructed in a structured way. Second, wires which were expli-
cit in our earlier languages are now implicit. This eliminates the need for tedious naming of
wires and resulting errors. Additionally, the structured nature of ALLENDE forces all
design rule violations to be caught by the system; hence, one need not use a standard design
rule checker.

Internally, ALLENDE generates not CIF but a higher level form which we call PIF.
PIF also is a uscful tool for interfacing other design tools. We are currently using both
ALLENDE and PIF to build a variety of other tools. Lin has written a channel router based
on ¢ Rivest-Fiduccia algorithm. Heng has written a pad router; he is now making it work
with the MOSIS pad frames. The Berkeley PLA generator has been interfaced to
ALLENDE; we are pow building a Weinberger -.ray generator.

2.2. Clay [North]

The Clay procedural layout systers is the primary design tool for the Princeton
Reduced Instruction Set Machine (PRISM) project. The control path bitslice has been fabri-
cated and is in test. The data path chip will be submitted to MOSIS for fabrication shortly.
These projects have given us experience with Clay in creating large VLSI layouts. The Clay
system has helped to shape the ALLENDE design language, and has also given us insight
into desirable characteristics for CAD tools combining both procedural code and graphics
and efficient techniques for implementing procedural layout systems.

2.3. Applications [Steiglitz]

ALLENDE is being used in the design phase of a project to study cellular automata.
The project is examining the capabilities of cellular automata as a model of general non-
linear phenomena. The implementation of cellular automata as VLSI chips will allow experi-
mentation that is too time-consuming or expensive using general purpose computers.
Currently. a multiprocessor cellular automaton chip with programmable next-state function
is being designed. We have already fabricated and tested an 18 processor cellular automaton
with a fixed next-state function; it achieves about 1.4 X10® bit updates per second.

LR T
Sl P P ~

S
EUR
(VRIS

-~
o

"y~ PR, - o .. PN . . .
. .. Sl . - . . R O . S . . R Lo .
PR R RV SR . . T BN . S .. . PN L. . . .
” Th O CRTILE W G P WY PN I WP SITINE B NP SPUL N R P EPOL I L. .y c. R L , PO .
P o o, ol d a8 b

TUTS

VLY LUl W N W N S

it ok foccditndcndvadclonclindiedodn Snciadenl e A

| SR A N e OO D L L LA I et R pet S Sl aeat M el otes el e sl et e a8 o

3. Census .

3.1. Top/Down Project [Lopresti)

This project is investigating the use of the census approach to parallel computations.
We currently have a four processor system running; recently four new processor boards
’ arrived. The new boards are based on the 32-bit national chip set and include floating point
and half a megabyte of memory. We are continuing our experiments on uses of the system,

focusing on a variety of local search and “‘simulated annealing” type tasks. A

3.2. ESP [Park]

A prototype version of the ESP controller hardware for use in the MMM Project is now
{ undergoing testing. The individual ESP controllers are designed with TTL hardware and
are currently on a multibus wire wrap board. These ESP controllers are being used to inter-
connect two Intel 8086 microprocessors together via a twenty bit wide ESP bus. The com-
pleted system will have a one megabyte memory space distributed across up to eight proces-
sors. We plan next to use the system as a test bed for a variety ¢ issues such as synchroni-
) zation, reliability, and global control.

F ST

4. Testing [LaPaugh, Steiglitz, Lucas]

We are continuing to exploit ways to use design modification to simplify testing. We
are currently empirically studying a variety of methods of using additional logic at the gate
level to enhance testability. The key questions are the tradeoffs between additional logic
and easy of test vector geperation,

bbb, Al L Ked LB VB A s fx % TR m

5. Recent Ph.D. Theses

M. D. Huang, “Localized Graph Algorithms with Low Page-Fault Complexity".

J. M. Mata, “A Mecthodology for VLSI design and a Constraint-Based Layout Language".
A.S. Vergis, “Multiple Fault Detection in Digital Circuits™.

. =

6. Papers

LI WV

Accession For
NTIS GRARI ﬂ ;
DTIC TAB

Unannounced]
‘.‘%ﬁ.cat io ‘ '
By.
| Distribution/
Availability Coglgs

'Avail and/or
Dist Special

PRLLY WY W 2 3

Aoll & B2 D

kel L E 2

e
A B 8 sa

ALLENDE: a procedural] e for the
hierarchical specification o% layouts

Jose Monteiro da Mata

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, New Jersey 08544

) Technical Report #325
October 1984

VA U

ALLENDE: a procedural language for the
hierarchical specification of VLSI] layouts

José Monteiro da Mata

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, New Jersey 08544

Abstract

ALLENDE is a simple and powerful layout language, associated witii a
structured design methodology for VLSL It has a combination of features that
set it apart from the existing VLS] layout tools. These features include the pro-
cedural language approach, the structured specification of the layout, the use of
constraints to represent the layout, and the use of an intermediate form in the
implementatlion of the system.

In ALLENDE the layout is described hierarchically as a composition of
cells; absolute sizes or positions are never specified. The layout description is
translated into linear constraints, which express design rules and relative posi-
tion of the layout elements. By solving these constraints we obtain the absolute
layout, which is guaranteed to be free of design rule violations. Errors in the
layout description are immediately detected and easily located.

ALLENDE ccnsists of five procedures to be called from a Pascal or C pro-
gram, allowing the user to describe a VLSI layout. A lot of parameterization is
possible when specifying layout elements, besides the ability to make use of the
full power of Pascal or C. The ALLENDE layout system has been implemented for
the nMOS technology. In this system we can also use cells generated by other
iayout tools. Our layout language can also be a target for a silicon compiler.”,_,,,.

i

1. Introducztion

The costs associated to the design of complex chips, the need to
make integrated circuit design accessible to a larger number of people,
and the need for more powerful tools to manage design changes, have
forced the reevaluation of VLSI design techniques. Methods to enhance
designer productivity have to be explored.

The layout phase is the most critical phase in the design of

integrated circuits, because it involves expensive tools and a large
amount of human intervention, and also because of its effects on

This work was suppsrted ir. part by NSF Grart MCS-800448C, DARPA Contract
N0OC14-82-K-0549, ONR Grart NCOC14-83-K-0275, and CAPES-Brazil.

-2-

production costs. A large part of the work in VLSI is dedicated to layout
tools and techniques. The majority of the layout tools are graphics edi-
tors, like STICKS[16] and CAESAR[12.. There also exist layout languages,
procedural or only descriptive, like LAVA[10], PLATES[14], HILL{5], and
ALI[61[15]. Layout languages have had limited success, mainly because of
being too verbose, limited in power and flexibility, and giving poor
results. One of the goals of layout tools is to produce error-free layouts,
but still today there is a proliferation of layout verification programs, like
design rule checkers.

In this work we concentrale on the layout problem. We have two
major goals in mind:

- to have a powerful tool that allows the designer to obtain easily a
correct layout for his design;

— to have a component that can be extended and integrated with
other components of a design system associated to a structured
design methodology.

Our approach for VLSI layout is basically to use a language to
hierarchically describe the circuit structure and layout topology, and to \
use linear constraints to internally represent the layout. ‘

Our layout system, ALLENDE[8[9], has a combination of features
that set it apart from the existing layout tools. The procedural language
approach and the representation of the layout as constraints distinguish
ALLENDE from all graphics-based layout editors and from most layout
languages. The difference with other existing or proposed constraint-
based procedural layout languages consists in the way the layout is
described, the kind of constraints generated, and also the form of imple-
} mentation of the system. The net result is the power, flexibility, and
‘ efficiency achieved by ALLENDE.

) 2. The ALLENDE Layout System

! 2.1. Basic Ideas

Our approach to tackle the layout problem is to have a language for
the description of the layout structure. From the textual representation
of the layout, constraints are generated, solved, and then the physical
{ layout is obtained. The characteristics of the language depend, of course,
on the class of objects manipulated and how they are manipulated.

In our system, the only object that we have are cells. A cell
. corresponds to a rectangle with internal structure and parameter wires.

—
vid — — wdd
NAND
gnd —i t— gnd
I
s b

Fig. 1-A pand cell

A composition of two cells is made by specifying their relative posi-
tion (left, might, above, below), and the result is another cell. A single
cell can also be rotated or flipped.

1
]
)
t
1
1
|
| SO

_L—’L-— s | A
L_Af e

Fig. 2 - Compasition of cells

_-_T_u___-_
|
!
)

When composing cells there is no need to worry about matching cell
size or wire spacing (except for cells of fixed size); the conditions for
matching are expressed in the linear constraints generated, and then the
size of a cell will depend on the context in which it is instantiated.

The first basic idea is to describe the layout hierarchically as a
composition of cells. At the boltom level of the hierarchy there will be
system cells (contact, transistor, etc.) or rigid cells (previously defined
layout pieces).

~

FyeTes Y "

AN BRI Sty

i a e meme . 4

Chid N RO —hiat ORI E SN A RS e A A R AL RN R Rt AR A A A AL A A 2 . M R Rt M LA |

(A above (B left C)) left (rotated90 D)

Fig. 3 - Structured layout description

When using a system cell we specify the wires on each side of the
cell. When two cells are composed, the wires to be connected, and the
parameter wires for the resulting cell, are determined by context.

The second basic idea is to use an intermediate language to
represent the layout structure. This language should be different from
the user language, but at a higher level than a mask level language, like
CIF (Caltech intermediate Form) [1]. The intent is to separate language
aspects from layout aspects, or user aspects from system aspects. For
layout or system aspects we mean constraint generation and layout pro-
duction. For language or user aspects we mean the high level language
used to describe the layout, and its implementation.

This intermediate language brings flexibility to the layout system.
There may be more than one user language, even a graphics language.
The implementation of the intermediate language and of the user
languages are independent, and easier than the implementation without
an intermediate language. The intermediatc language deals with the lay-
out structure only, while the user language may have all the power of a
procedural language. The idea then is to extract all the layout informa-
tion from the user program, and then process it.

RIS ST NS L
RN Lo et -_~.‘..-_~‘-_-.. We e .- R . .
PSR, Nl SR SRR U J0N. UL SO T A 5. PR PGl J . U VR LS N S AL UL Wl I S

G

graphics
editors

vis!
languages

PIF CIF

Fig. 4 - The role of the intermediate language

Based on these ideas we built a layout system. There is a user
language, ALLENDE, that is no more than Pascal or C with a few pro-
cedures and functions added, ard an intermediate language, PIF. The out-
put of the user program is the layout structure in intermediate form
(PIF), from which linear constraints are generated, solved, and the abso-

simulator

lute layout in CIF is produced.

Fig. 5 - The layout generation process

This layout system works for the nMOS technology, and extensions
for other technologies are under study. We use CIF to describe the final
layout, although other languages could be used; in the same way, Pascal
and C were chosen just for reasons of convenience. We use only right-
angle geometry. The coordinate system is a half-lambda grid.

__________ y _ et —_— mmmmm ey
| }) I ! h
user | laycat ia ! ! ' ! i
- Y - INTERPRETER I-——o} constraints L—ef SOLVER b 03003 !
program I int. form : | { : | ! coordinates
e e ! [4 } l., e
1 i
jTTT T T 1
P osymbele LAYOJT
| iayou:) GENFRATOR |
[, . —- .
ot
; lsyout
: in CIF

e e e — =

12

-6-

2.2. Describing Layouts Using Linear Constraints

As shown in fig. 5, in our layout system there are different
representations for the layout: the user representation (in ALLENDE), the
intermediate form (in PIF), the symbolic form with constraints, and the
mask-level representation (in CIF). In CIF the layout objects, mainly rec-
tangles, are described in terms of absolute coordinates; the coordinate
unit is one hundredth of a micron.

Our syinbolic representation of the layout is in terms of the relative
coordinates of the layout elements; the relation between these coordi-
nates is expressed by a set of linear constraints. The variables in these
constraints are the X and Y coordinates of the objects in the layout. The
constraints describe the interaction between the objects, and may come
{rom the geometric design rules, connectivity, and hierarchy in the lay-
out description. By solving the constraints and replacing the values
obtained for the coordinates in the symbolic layout we obtain the abso-
lute layout.

The set of constraints is solved in such a way to minimize the total
area. Due to the large number of layout elements, the constraints ought.
to be as simple as possible, in order to reduce the complexity of the solv-
ing algorithm. We assume that the X and Y constraints are decoupled;
this means that no constraint involves both X and Y coordinates, and that
constraints involving X and Y coordinates are independent. We don't
allow constraints to be related by the operator or, for example. By decou-
pling the X and Y constraints the compaction problem is made equivalent
to solving two independent sets of constraints.

The whole layout is represented using constraints of the form:
=z
z;—z;2d (d >0, integer)

z,—z;=e (e >0, integer)

We have an efficient algorithm to solve such constraints, described
in [7]. The algorithm is based on the topological sort.

Each constraint of the form z; —z; = e corresponds to a mgid cell.
The user may control the number of constraints by constructing the lay-
out in several steps: making rigid cells and using them at the next level of
the cell hierarchy. If there are no constraints of the form z -z; =e in
the set of constraints genercted, there is always a solution to the equa-
tions, since our way of generating constraints doesn’'t create "cycles".
The only situation when there is no solution to the set of constraints
occurs when a rigid cell doesn’t fit the context where it is instantiated.
For example. some condition may force a larger separation between two
parameter wires of a rigid cell.

.......

-7 -

2.3. The Intermediate Language PIF

The idea behind PIF is to represent the layout structure in a com-
pact way, as in fig. 3. The objects in the layout are cells, and the cpera-
tors specify position or oricntation. Our layout representation is exactly
like an arithmetic expression;, operands are cells, binary operators
< specify relative position (left, right, above, below), and unary operators
specify orientation (rotalion or flipping). Operator precedence is as usual,
and parentheses can be used to change precedence.

A layout in PIF is a structured combination of cells, while a layout
in CIF is a corabination of rectangles and other elements in any order.
@ The result of the interp:ctation of a PIF program is a set of constraints,
the layout in svmbolic form (no absolute coordinates assigned), and the
circuit (at the switch level) {or simulation.

An example cf a PIT program is given in fig. 6. The code "C{. . d2m3
]" represents a cell that is the contact of two wires: diffusion 2 lambda
< wide coming from the right and metal 3 lambda wide coming from the
bottom (the two "."s indicat~ that no wire comes from the left or top). "A"
means above, "+ means crossing, the parentheses delimit a cell, and
"Sexample' specifies the name ezample for the cell.

L
Sexample
(
cCIL . . d2 m31
A :
+ [p2 m3 p2 m3 1 N 92 AP
e leaid

Fig. 6 - A PIF program

In PIF, layoul construction is like expression evaluation. If we use a
grammar to describe this Jayout language, the construction of the layout
can be done when parsing, in a bottom-up fashion. In fact, this is similar
to the way the systern for tvpesetting mathematics EQN [4] was designed

‘o and implemented. In EGN, equations are pictured as a set of "boxes",
pieced together in various ways.

Fig. O shows the grammar that describes the PIF language, exactly
in the same format subn.itted tc the compiler generator YACC [3]. As a
PIF program is supposed to be generated by a program, and not by the
user, we tried to make the language compact and easy to process, not
worrying about readabilily, although one can read a PIF program.

T

. . . . e o ‘o el L - ot e
L I T T T P T Y . o A P Ty S L D T WO -1 DR

chip

cell

ur fentedcell

singlecell

composedcell

orientation

label

wirenames

rigidcell

syscell

cellcode

wires

wicrelist

vire

cell
{ chipinterface($1); writefiles{(); }

orientedcell
cell POSITION orientedcel)
{ 8% = compose($1,$2,$3): ?

singlecell
orientation sirglecell
{ resetorientation{): $%$ = $2:

syscell
rigidcell
compcosedcell
label composedcel]

{ endcell($1); 3% = $2;)
*(° cell *)°

{ 8% = $2;)
‘{* cell ')’ wirenames

{ putlabels($2,%4); $% = $2;

CGRIENTATION
{ 8% = changeorientation($1); }

LAEBEL
{ newcell($1); $8 = $1;)

WIRENAMES
{ 82 = namelist($1);)

CELLNAME
(88 = rigidceli(s$l); ?

cellcode '[’ wires wires wires wires 'J}°
{ 8% = syscel1(%1,%$3,.%4,%85,%6,0,.8); }

cellcode INTEGER INTEGER ‘[*' viires wires wires wires ')°
{ 8% = syscell1($1,%$5,96,%$7,$8,%82,%3); 3

SYSCELL
{ 8% = cellccde = $1:)}

wire
‘1" wirelist *1I°
{ 8% = $2;)

wire
wirelist wire
{ $¢ = wirelist($1]1,82);

LAYER INTEGER
{ $3 = startwire($1,%$2):)

' s

{ 8% = startwire(NOLAYER,Q);

Fig. 7 - PIF grammar

‘N.

.....

-9-

The lexical elements are the fcllowing:

INTEGER: an unsigned integer;
LAYER: m, p, d (for metal, polysillicon, and diffusion);
SYSCELL: CXT 1P+ WJEN

(for contact, independent contact, transistor, implanted
transistor, pullup, crossing, line, jog, empty, and nullcell,
respectively);

POSITION: L R, A, B (for left, right, above, and below);

ORIENTATION: 70, v90, 180, v270, f0, f90, f45, f135
(for rotation and flipping);

CELLNAME: Scellname
RIGIDNAME: &nmgidname
WIRENAMES: {wirenames]
COMMENT: /comment /

The smallest object that we handle is a system cell, which
corresponds to a structure built according to the design rules and that
forms a contact, a transistor, and so on. The cells contact, transistor, and
pullup are the usual ones. An implanted transistor is a pullup with the
gate not connected directly to the source. An independent contact
represents the connection of wires of the same layer independently of
other layers; il is basically used to represent independent overlapping
wires in a cell. The crossing of wires in the layout has to be specified, and
the cell crossing 1s used for this purpose. A jog represents a bend in a
wire, that can move in two directions. The cell empty represents a cell
with nothing inside, and it is useful for top-down design. The cell nulicell
has no effect; it is like an identity element for the placement operation.
and it is useful to simplify some programs that describe a layout. line
means a single wire or a set of parallel wires; it is used in situations like

the one shown in fig. 8.
! l——‘—:—" """" 1 i
! o
.] r—1
f) ——-[—i L A left (B above LINE)

e e — -

Fig. 8 - Use of the "line"” system cell

-10-

A rigid cell is a cell of fixed size; its code is in CIF, with a header giv-
ing information like size and parameter wires. rigidname is the name of
a file containing the rigid cell. cellname is just the name of a cell, used
mostly for debugging purposes.

Wire names are related to a cell, and they refer to the parameter
wires of the cell. One of the uses of wire names is to give information for
simulation.

2.4. The ALLENDE Language

ALLENDE (A Layout Language Effective for nMOS Design) is a set of
procedures and functions to be called from a Pascal or C program, allow-
ing the user to describe a VLSI layout. Basically, the user describes cells
and their relative placement. Cell hierarchy comes naturally by using
procedures to describe cells.

The user can make use of the full power of Pascal or C. The basic
procedures and functions to describe the layout allow a great deal of
parameterization, thus allowing the user to obtain completely different
iayouts just by chenging a parameter in the program.

The output of the user program is the layout in intermediate form
(PIF), from which linear constraints are generated, solved, and the abso-
lute layout in CIF is produced. The layout obtained is guaranteed to be
free of design rule violations.

The basic idea of the ALLENDE language is the same as in the PIF
intermediate form: the layoul is described hierarchically as a composi-
tion of cells. The difference now is that the user has available all the
power of a procedural language.

The following procedures allow the user to describe a layout.:

syscell(kind, wire !, wire 2, uire 3 wire4,ratio)
eztcell(filename)

place(operator)

begincell(cellname)

endcell{unrenames)

syscell specifies a system cell. extcell specifies an external cell.
begincell and endcell are used to delimit a composite cell. place specifies
the operator to be applied for a cell composition.

Since what these procedures do is to generate some intermediate
code to be interpreted later on, Pascal (or C) commands can be inter-
mixed with calls to these procedures. The user can also define new pro-
cedures in terms of these basic procedures.

-, -

p A.\A‘ -.- 4

.

o

o .

...................

LAMIOI SIS SN SPUM A S S S st SNl UL L B S T o T T

-11-

Fig. 6 shows the ALLENDE program, in C, that generates the PIF
program of fig. 6. The generation of PIF code is straightforward: each call
to one of the five procedures listed previously causes the generation of
the corresponding code in PIF. For example, endcell(" ") generates only
the character ")".

#include "/va/allende’/usr/def.h"

main{)
{
begincell ("example")3
syscell (CONTACT, nowire, nowire, diff(2), metal(3), 9@ };
place { ABOVE);
syscell (CROSSING, poly(2), metal(3), poly{2), metali3), &);
endcell (" ")3
3

Fig. 9 - An ALLENDE program

The procedure syscell allows the specification of a system cell.
There are 10 kinds of system cells: CONTACT, ICONTACT, TRANSISTOR,
ITRANSISTOR, PULLUP, CROSSING, LINE, JOG, EMPTY, and NULLCELL.
These correspond to the system cells described in the previous section.

The only place where the user has to specify wires is for system
cells, where he gives the wires at left, top, right, and bottom of the cell.
The functions metal(undth), poly(uwidth), diff(width), nowire, and the
more general function wire (layer, uidth), allow the specification of a wire
(metal(uidth) is just a shorthand for wire(METAL width), for instance).
Here is one place where a lot of parameterization can be done. layer and
width can be parameterized; also, a wire can be a variable. It is also pos-
sible to have more than one wire at one side of the cell, allowing for over-
lapping wires or more complex cells.

The operators to be applied to the cells can be: LEFT, RIGHT,
ABOVE, BELOW, ROTATEDO, ROTATED90, ROTATED180, ROTATED270,
FLIPPEDC, FLIPPEDS0, FLIPPED45, FLIPPEDi35.

The procedure ezxtcell specifies a filename containing an external
cell. The external cell can be in intermediate form, in which case we call
it flezible, or it can be in CIF, in which case we call it rigid. One special
kind of external cells are pads, which are rigid cells. There is a pad
library.

......

Ol B A SAL AL A S g N AR N R S T aRC S M o Bt i] L O TSNS S A R Ch A et o Tl St "R ‘\-"“\“-v\“"\‘(“T

-12-

® The procedures begincell and endcell are used to delimit a compo-
site cell. The parameter of begincell is a character string containing the
name of the cell; the name may be blanks only, in case we don't want to
name the cell. The cell name is used to trace errors. If the cell is named
it will correspond to a symbol in the CIF code, thus preserving the cell
P hierarchy, useful for programs that display CIF.

The parameter of endcell is a string containing the names of the
parameter wires (usually only blanks). These names will appear in the CIF
code, and they are useful for simulation.

Fig. 10 describes a nand cell, and gives some examples of parame-
@ terization. Fig. 11 describes a binary tree that uses the nand flexible cell
generated previously.

G

(o

(o

(@

[.
..) -
) T. . - o - R C e A et . fet et
e oa’a® PV DR W S SR U DA W S | VN WS R Aan o s S -

-13-
program nand({output);
const
#include “"/va/allende/usr/const.h"
type

#include “/va/allende/usr/tyre.h"
var power,ground,p2,d2: wiretype;
#include “"/va/allende/usr/proz.h"

procedure contact{wl ,w2.,w3,wd: wiretype);
begin syscel1{CONTACT ,wl ,w2 ,w3,wd ,0); end:

procedure crossing{wl,w2: wiretype):
begin syscel1{CROSSING,wl ,w2,wl,w2,9); end;

procedure above;
begin place(ABOVE): end:

procedure nand;
begin
begincell{'nand"’)
begincell(’columnl)

syscel1(LINE.pow;r.nowire.power.nowire.ﬂ):

contacti{rowire,nowire,p2,p2)
crossing(ground Fr2);

endcel1(")

piace(LEFT):

be3jtncell{‘column2');
contact{power ,nowire,power ,d2);
syscell(PULLUP ,nowire,d2,p2,d2.4);
sysce1l(TRANSlSTOR.noere d2 p2 d2 g);:
syscel 1{TRANSISTOR,p2,d2, nowire d2,8);
contact{ground,d2,ground, nowire)

endcell{®),

place{LEFT;

beginceli{'columnld’);
crossingl{power ,n2}:
contact(pz.p2.now1re,nowlre);

ontzrt L 2, ncwire,rowire,.p);

c ossinalgr _und,.pl).

endce1(” ‘s

erdcell(” M

end;

Lo
power:= wire{MLIAL,5):
ground:= wire{(METAL.5);
p2:= wire(POLY,2);
d2:= wire(DIFF,2);:
nand;

end.

above;
above:

above;
above;
above;
above;

above;
above;
above;

xi‘A..

. '<' - ‘\ N J
PR, VO

-14-

program binarytreeloutput);

const

#include “/va/allende/usr/const.h"
type

#include "/va/allende/usr/type.h*
#include “"/va/allende/usr/proc.h*

procedure root;

beain
extcell{'nand.pif*);

end;

procedure btree{n: fnteger);
begin
begincell(’btree’);
if n =1 then root
else begin
root;
place{ABOVE);
begincell(* *)
btree(n-1);
place(LEFT)
btree(n-1);
endcell{(' *);
end {if};
endcell(’ ')
end;

.
*

begin
btree(4);
end.

Fig. 11 - Binary tree

. . .) St ettt ares .
AR ~ e . . [U
. TN . .~ LSRN .
S AR TR P S S "oy SR SO RAPRAPYE, WAL AW WL WP, IS APTEE.

STer e e e

N AR -

- -~ - - - . - . t e
PP W WAL RPN YA

,A_V, ;.'

. e "
A A

L T T N A AN . S U T AR A A S A L AU S IR e o ":T'.'T'."".'r_'"‘.""_"'-'v-"‘f'."'r.'-"~'7-.‘"7*?."3"1

-15-

Parameterization can be done extiensively, and it simplifies the
modification of layouts. For example, a wire can be fully parameterized,
as "power” in fig. 10. Parameters in the program not related to the
ALLENDE basic procedures can also be used to produce general cells; one
example is the depth of the tree in fig. 11.

Errors may occur during compilation of the user program, execu-
tion, interpretationn of the PIF program, and solving the constraints.
Compilation and execution errors are the usual ones, detected by the
Pascal or C compiler or during execution. In case of error during
inlerpretation of the intermediate form describing the layout, the PIF
interpreter identifies the cell where the error occurred. The only possible
error during the process of solving the constraints is a rigid cell not
fitting the context where it is instantiated; in this case, the solver points
to that cell which caused the error.

2.5 The Complete ALLENDE System

The ALLEXNDE layout system, as it stands now, is comprised of four
programs:

- ALLENDE
It takes a program and generates the layout (rigid cell}, the circuit
al the switch level, or a flexible cell to be used later on.

— SIMULATE
This program is a switch-level simulator, based on [13].

- CIF2CELL
The idea of CIF2CELL is to make possible the use of CIF code gen-
erated by other tools. It basically finds the cell interface. The CIF
code is then used as a rigid cell.

- CIF2CIRCUIT
When rigid cells are used, it is not possible to extract the circuit
from the "high-level” description of the layout. In this case, the cir-
cuit is extracted from the layout in CIF. Our program interfaces to
a circuit extractor, end currently we are using the Berkeley circuit
extractor meztra {11

(A

-16-
ke) e Sty =TT
| complied ' ! flexible cel! | ! ‘
P comP ! prerne et CIPeCELL fe—— CIF code !
el ! . R | | | |
L——__‘\ L——-_Ir____‘ L_I___ [, Z
; ---------] \ [At |

Pesce!/C ! ! rigd cell
! b ALLENDE p——b !
| program ! R (%13 '
L 4
pommmmm s .

' output

]

: |
———B SIIULATE p—e i
' ! L values [}
' |

Fig. 12 - The ALLENDE system

The programs composing the ALLENDE system were written in C
and Pascal. The system runs under the Berkeley UNIX operating system,
and is currently used on a VAX 750.

3. Advantages of our approach

By making layout design similar to software design we can apply
our knowledge about programming to this new activity. The main issues
associated to the use of a procedural language for layout description are
the following.

- hierarchical design

Hierarchy already exists in programming languages, in the form of
procedures, and the programmer is used to il. Use of this hierarchy
for layout design enforces a good desigr. methodology.

g ananan e . . o o

Y T T

9

7,

expressive power

All the power of a procedural language is available to the designer.
Parameters, conditional statements, iterative statements, etc., can
be used. Parts of the layout, such as a PLA or a routing cell, in-
stead of being described by the designer can be generated by a
program.

parameterization

Having a layout design which produces different layouts for
different values of a set of parameters is extremely useful. Exam-
ples are the parameterization of the layer or width of a wire,
transistor ratios, or size of shift registers. This parameterization
can involve local or global changes in the layout, and it simplifies
the modification of layouts. It also allows general cells, whose
characteristics depend on the values of some parameters (like a
routing cell).

documentation

If the layout is described using a programming language we have
some documentation on the design. This helps other people, and
even the own designer, to understand the design.

open ended tool

Graphics editors tend to be closed tools in the sense that it is hard
to automate the layout process beyond what the original design of
the system allowed. Procedural languages are much better in this
respect. The input to a compiler is text that can be generated by
humans or by a program, while a graphics editor has an interactive
nature, being designed basically to accept commands generated by
humans.

no expensive equipment

With a programming language for layout description we can avoid
the need for sophisticated computing resources. A standard al-
phanumerical terminal in combination with a small pletter or CRT
display shared by several designers can be used effectively for lay-
out design.

Much is gained bv not assigning absolute positions to the layout ele-

ments directly, but by representing the relations among elements by a

set of constraints. Implicit layout rules and cell flexibility are the main

benefits of representing the layout as constraints. The design rules are
implicit in the constraint generation process. This design rule free

-18-

environment relieves the desigrier of details that can cloud more global
and important issues. What is more important, the layout obtained can be
guaranteed to be free of design rule violations, thus eliminating the need
for design rule checking.

If a piece of a layout is specified in absolute positions, serious prob-
lems are likely to arise when different pieces are put together. In
constraint-based layout systems the absolute sizes or positions are deter-
mined by the system after solving the set of constraints. This makes
cells flexible, with the possibility of being stretched in order to combine
correctily with other cells.

4. Cnanclusions

The ALLENDE layout systern has been used by a number of people in
the design of chips whizh were successfully fabricated, and in experi-
ments with layout tools [2]. Some layout tools, like a PLA generator and a
ped router, have been wiitten ir. ALLENDE with little effort.

One important aspect of a system, seen only when you use it, is
detection and location of errors. In ALLENDE, the layouts produced are
correct by definition, in terms oi connectivity and design rules. In case of
errorz in the user spezcification of the layout, the system points the cells
and wires involved in the error.

As far as compaction is concerned, the layouts produced by the
system are relatively dense. It is hard to make a comparison of laycut
density for layouts produced by ALLENDE and those produced by hand,
because that depends on the regularity of the layout and on the expertise
of tire designer. Based on our experiments, we find that for regular struc-
tures we obtain something close to the same density, while for irregular
structures we spend about 20 percent more area than the corresponding
hand-packed layout.

The structured represeritation of the layout and the use of an inter-
mediate language (PIF) have led to a very eflicient system, in terms of
space and execution time, and a straightforward system implementation.

The ALLENDE layout systein is based in the nMOS technology; this
system was an experiment and the nMOS technology is well understood.
There are plans to extend the language to the CMOS technology, and also
to allow more layers, like a second metel laver. Besides that, we intend to
investigate its applicabilily in the design of printed circuit boards.

h graphics editor can be easily incorporated to the ALLENDE sys-
tem. The main characteristics of this editor, compared to other layout
editors, would be:

d

7"'."7‘“:'1’

-19-

- Lhe objects dealt with by the designer are cells, and not shapes;
- the objects are composed in a structured way;

- the designer only specifies relative positions; the absolute positions
are determined by the system, taking in account the design rules,

- the obtained lavout is free of design rule violations; no checking is
necessary;

- éonnectivity is also guaranteed, and the circuit can be directly ob-
tained

In an ALLENDE program the circuit structure and the layout struc-
ture overlap, that is, the user describes at the same time both the circuit
structure and the layout structure. The circuit structure gees down to
the level of transistors and contacts. We could have a language allowing
the specification of the circuit structure at a higher level (at the gate
level or at the functional level, for example). From this specification the
laycut in PIF would be generated. Genreralizing, PIF (or ALLENDE) could
be the target language for a VLSI design tool, even a silicon compiler.

Besides being a powerful tool, ALLENDE is associated with a struc-
tured methodology for VLSI design. Having a tool that enforces hierarchy
and the use of regular structures is going to improve the way we design
integrated circuits. That is one step in the direction of managing the VLSI
design complexity.

5. References

[1? R.W. Hon and C. H. Sequin
“A Guide to LS] Implementation - Second Edition"
Xerox PARC, Palo Alto, CA, Jan. 1980.

[2) K Iwano and K. Steiglitz
“"Some Experiments in VLSI Leaf-cell Optimization"
1984 IEEE Workshop on VLSI Signal Processing, Los Angeles, CA,
Nov. 1984 (to appear).

[3° S.C.Johnson
"YACC: Yet Another Compiler-Compiler”
Computing Science Technical Report No. 32, Bell Laboratories, Mur-
ray Hill, NJ, i975.

(4.

B. Kernighan and L. Cherry
"A System for Typesetting Mathematics"
Communications of the ACM, Vol. 18, No. 3, March 1975.

[#1]
[

9]

[
-
(@]

Coa

[11]

lashal

(13;

[14]

L e L S
. .- - RN
. . - T
S At e atalRt v

-20 -

T. Lengauer and K. Mehlhorn

"The HILL System: A Design Environment for the Hierarchical
Specification, Compaction, and Simulation of Integrated Circuit
Lavouts”

1984 Conference on Advanced Research in VLSI, MIT, Jan. 1984.

R. J. Lipton, J. Valdes, G. Vijayar, S. C. North, and R. Sedgewick
"VLSI Layout as Programming"

AC) Transactions on Programming Languages and Systems, Vol. 5,
No. 3. July 1983.

J. M. Mata

"Solving Systems of Linear Equalities and Inequalities Efficiently”
14th Southeastern Conference on Combinatorics, Graph Theory and
Computing, Baton Rouge, LA, March 1984.

J. M. Mata

"Trnie ALLENDE Layout System User’s Manual”

VL3I Memo #9, Princeton University, June 1884.

J. M. Mata

“A Methodology for VLSI Design and a Constraint-Based Layout
Laiguage”

PhL.D. Thesis, Princeton University, Oct. 1984.

R. Mathews, J. Newkirk, and P. Eichenberger

“A Target Language for Silicon Compilers"”

CGMPCON 82, San Francisco, CA, Feb 1982.

R. N. Mavo, J. K. Ousterhout, and W. S. Scott

""1983 VLSI Tools: Selected Works by the Original Artists”

Report UCB/CSD 83/115, University of California at Berkeley,
March 1963.

J. Ousterhout
“"CAESAR: An Interactive Editor for VLSI Layouts”
VL3I Des:gn, Fourth Quarter 1981.

V. Rarnachandran

“An Improved Switch-Level Simulator for MOS Circuits”

20th Design Automation Conference, Miami Beach, FL, June 1983.

S. Sastry and S. Klein

"PLATES: A Metric Free VLSI Layout Language"

1682 Conference on Advanced Research in VLS], MIT, Jan. 1982.

J. Valdes and R. L. Kaliu

"ALI2 Documentation and Implementation Guide: Language Over-
view"”

VLSI Memo #8, Princeton University, Feb. 1983.

...........

':'YV'_'*.-<~'.— A it o ™ A" WA e~ u e~ o ~ SO el e A=) B A i s e i~ e S T e e e Bt ToATY T REW

-21-

® [16° J.D. Williams
STICKS - A Graphical Compiler for High Level LSI Design”
AFIPS Conference Proceedings: 1978 Nalional Computer Confer-
ence, Anaheim, CA, June 1978

€«

..................
- u N OO . . T R Y e Ty Tt . Tt e o
Pl " e a1 a" m A e m oAt et A" wtlTaT 4 et et - N S . P .. e ® u P a ' 2" & & ®w" o s e st

to

D i P AN EaiiC i o S et Sl Al B B et Mo ab dt ‘S dhna e SO Tl S Y s B A g S e

1984 IEEE Workshop on VLSI Signal Processing
University of Southern California
Nov. 12-14, 1984

Some Experiments in VLS] Leaf-cell Opt.imizat.ionT
Kazuo Jwano

Kenneth Steiglitz

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, N. J. 08544

Abstract

This paper describes a method for local optimization of VLSI leaf cells, using
the parameterized procedural layout language ALLENDE [5]. Tradeoffs among
delay time, power consumption, and area are illustrated. Three different imple-
mentations of the 1-bit full adder ar: compared: a random logic circuit, a data
selector, and a PLA. The fastest random logic !-bit full adder has a time-power
product about 1/3 that of the fastest data selector, and about 1/4 that of the
fastest PLA. The 4-bit parallel adder is used to illustrate the effect of loading
when leaf cells are combined.

1. Introduction

In the design of a custom VLSI chips it often happens that there is one cell
that is used many times, usually in an array or a recursive structure. The fact
that a cell is used many times means that there is a large potential payof in its
optimization, and that the problem can be made small enough to be manage-
able. Arrays of cells are especially common in digital signal processing applica-
tions, where regular structures, like systolic arrays, lead to designs that are
easy to lay out efficiently, and have high throughput. As examples, bit-parallel
and bit-serial multipliers can be constructed from one- and two-dimensional
arrays of one-bit full adders, as can a wide variety of pipelined FIR and IIR fiiters
(see [1], for example). As another example, a processor for updating one-
dimensional cellular automata has been designed at Princeton which consists of
a one-dimensional array of 5-input/1-cutput PLA's [10]. In such cases the prob-
lem of making most efficient use of a given piece of silicon breaks down into two
distinct problems: 1) choice of the global packing strategy (the method of laying
out and interconnect .g leaf cells, and connecting them to power and clocks),
and 2) the design of the iterated structure itself (which we call the leaf cell). In
this paper we study the second problem: the design of eflicient leaf cells. The
example used throughout is the most common in digital signal processing, the
1-bit full adder.

There are three important measures of how good a leaf cell is: its time
delay T, its peak or average power dissipation Pp,; or Pg,: and its area A.

" Th:s work was supported by National Science Foundaiion Grants £CS-8307855, U.S. Army
Army Research 0%ce, Durnam, NC, under Grant DAAGR9-82-X-0095, DARPA Contrac: NOOO14-
82-X-0549, and ONR Grant N00014-83-K-0275.

G

RIS i el v s e RROMA R S M Sal P saks Wl fo tt S Ty

Ideally, the designer should be able to trade off these measures, one against the
other. For example, in one application the clock may be fixed at a known value
To, and it would therefore be senseless to make the the cell faster. On the other
hand, peak power may be a real constraint because of heat dissipation limita-
tions, and at the same time it may be important to keep the area small so as to
fit as many cells on one chip as possible. We might therefore try to minimize
some measure of the peak power and area (the product, for example), while
enforcing the constraint T < Tq. In other applications speed may be critical, and
it may be important to minimize T while observing constraints on P, and 4, and
so on. In general, we would like to have enough information about the tradeofls
among the measures T, P and 4 to make intelligent design decisions. As we will
see, the P-T tradeofl is often of most interest, since the area is often a less sen-
sitive function of design parameters (at least for fixed topology).

2. Formulation

The basic approach we take will be to search tor local improvements on ran-
dom initial designs. The search strategy will be to consider all single or double
changes in element size along the critical path. When only single changes are
tried, we call the prccedure "1l-change”, when double changes are tried, "2-
change"”. The idea is that the critical path indicates which parameters are most
important to performance at any given point in the analysis.

We will limit the optimization to choice of pulldown widths. The method can
be extended to choice of layers, orientation, and topologies. We will, however,
study three radically different topologies for the full adder: the PLA, data-
selector, and random logic.

The main analysis tools used in these experiments are the timing simulator
CRYSTAL, and the power-estimation program POWEST, together with the rest of
the Berkeley tool package [2].

Another essential component of the work is a procedural, constraint-based
layout language for specifying VLSI layouts; in this case, we used the new
language ALLENDE being developed at Princeton, a successor to ALIZ and CLAY
(3,4,5]. This allows us to specify circuit parameters and have a cifplot generated
automatically.

3. The Critical-Path Optimization

Figure 1 shows how the optimization is performed in our experiments. In
Figure 1 faparm is an input parameter vector to ANALYSIS which has diffusion
widths of nodes as desc_ibed in section 4. The initial faparm is generated at ran-
dom by RANDOM according to its input file pattern. ANALYSIS takes faparm as
its input and generates an appropriate layout and its resulting T, P, and A as
well as the nodes on the critical path (hereafter called the critical path nodes
). Since every node on the critical path has an associated parameter in faparm,
CASEGEN can generate faparms as subcases by using the one-(two-)change
method. Here the one-(two-)change method changes one(two) parameter(s)
associated with the critical path nodes by one step. (From here on the 1-
change method is denoted by 1-opt or Random 1-opt, and the 2-change method
by 2-opt or Random 2-opt.)

The optimization strategy is shown in the flowchart of figure 2. When the
first improvement occurs, this case is picked up for the next iteration. If no
improvement occurs but there exists a case which has the same cost and has

K.

X,

K,

)

I R I I . IS A I A A A A LR S S AR Al Rl a A DR AT R DR SE

not yet been analyzed, this case is adopted next. Otherwise a new random
faparm is generated for the next iteration, to search for other locally optimal
points. We used two cost criteria for optimization: T, and Pme 7T (hereafter
denoted by PT). Figure 3 shows an outline of the main procedures used in the
ANALYSIS loop. A short description of each follows below:

1) ALLENDE This procedural constraint-based VLS! layout language pro-
duces an integrated circuit layout in Caltech International
Form (CIF) corresponding to the specified parameters [5].

2) MEXTRA MEXTRA reads CIF and extracts the nodes to create a circuit
description for further analyses [2].

3) CRYSTAL CRYSTALL is used for finding the worst-case delay time of the
circuit [2].

4) POWEST POWEST is used for finding the average and maximum power
consumption of the circuit.

5) CRITICAL CRITICAL reports the critical path nodes by using the output
of CRYSTAL.

6) LIST This corr mand stores the vector of results (T,P,A) in the HIS-

TORY file for further optimization.

In figure 3 the squares surrounded by dotted lines are files used for inputs
or outputs of the above procedures.

1) faparm The faparm has parameters for layout genera-
tion; for example, the diffusion width of each
node, the permutation of product terms in a
PLA, etc.

2) layout generating program There are several ALLENDE programs imple-
menting desired circuit topologies such as the
PLA, random logic, etc. Each program requires
parameters in its corresponding faparm.

3) the critical path nodes The critical path nodes are extracted from the
output of CRYSTAL. Each node can be associ-
ated with parameters in faparm. This is done by
looking up a table for each topology, which
associates each node with its corresponding
parameter.

4. Full-Adder Circuit Implementations

As mentioned in the Introduction, we adopted the 1-bit full-adder circuit as
an example for experimentation, because it is relatively simple, but is a basic
arithmetic logic circuit. The 1-bit full-adder circuit can be implemented in
many ways. We chose three kinds of circuits: the PLA, Data Selector, and Ran-
dom logic. Each layout has several parameters. We will use the vector represen-
tation of these parameters; that is d =(d,dz ..., d,) means that the
diffusion width of node i is d,A. We also use the vector k = (k kg, . . ., kn) to
mean that the pullup to pulldown ratio of the inverter, NOR, or NAND circuit in
which node i exists is &;. The vector k is fixed for each circuit.

1) PLA

\

Co

(o

\¥'4

Figure 4 shows the full-adder circuit diagram implemented by a programmable
logic array (PLA) [7]. This layout has the following 17 parameters and 2 permu-
tations.

d= (dmdl- s -dnndwdorpdorz'din,.lv T -dms_z-domt-doula-"l-"Z)
k=(4444.444444.4444.4,4,4)

- 7 pulldown diffusion widths of the AND plane.

- 2 pulldown diffusion widths of the OR plane.

- 8 pulldown diffusion widths for inputs.

- 2 pulldown diffusion widths for outputs.

- 1 permutation of product terms in the AND plane.

- 1 permutation of outputs.

In the optimization process, the two permutations are fixed for the sake of sim-
plicity. However those two permutations are chosen in advance in order to give
the best result before the optimization by doing experiments based on various
random permutations as inputs.

2) Berkeley PLA

The PLA generated by using mkpla of the Berkeley VLSI tools [2,8] is used for
the purpose of cost comparison with the PLA implemented in 1). This PLA is not
optimized, but uses the following fixed parameter vector.

d =(4,4,4,4,4,4,4,4,4,8,8,8,8,8,88,8)
k=(44444444444444444)

3) Data Selector

Figure 5 shows the full-adder circuit diagram of a Data Selector implementation
[9]. The following truth table is used.

G B S G

0 0 A G (or B)
0 1 A A

1 0 A A

1 1 A G (or B)

This circuit selects inputs (4, 4, or G) instead of calculating S and C,. Here
is the input carry signal, G is the output carry signal, and S is the output sum
signal. 4 and B denote the two other inputs. This layout has the following 8
parameters.

d = (d4.dp.dg.d).dz,ds.de,.ds)
k=(4,4448,4838)
- 3 pulldown diffusion widths for input inverters.
- 3 pulldown diffusion widths for internal inverters.
- 2 pulldown diffusion widths for output inverters.
4) Random Logic
Figure 8 shows the circuit diagram of the Random Logic Implementation [8].

I,

K.

(s

e

(s

TL"J"‘."'."."-

MR e L Ral e e Sl S e e A e T N M N e R Chs M S R A0 A e S e AFE e B

This layout has the following 4 parameters.
d = (d,dadg,.ds)
k=(8,124,4)
- 2 pulldown diffusion widths for internal inverters.
- 2 pulldown diffusion widths for output inverters.
All the circuits above were verified by ESIM [2] or SIMULATE [5].
5. Parameterization

The diffusion width of the pullup in each stage is automatically determined
and implemented by ALLENDE in the following way. Suppose that the current
parameter vector isd = (d;,dj ...,d,), and the pullup-to-pulldown ratio vec-
tor of the specified layout is k = (k,,ka, kn). (The choice of pullup-to-
pulldown ratio is discussed in [7].) For each node %, define the variables Zpy, Zpq,
and a pullup-to-pulldown ratio K as follows.

Zﬂ:i| Z —i K-EE_‘_

' -Zpd

where
Lpu (Lpg) is the length of pullup (pulidown).
Wou (Wpe) is the width of pullup (pulldown).

Wpa =di, K=kiand Lpg =2

Lpy and Wpy are determined as follows.

If Wog < 2K
Weu =2
_ L2 _ 4K
2 Wy O =y
If Wpq > 2K
Wp,, = Wpd / K
/W, 2KW,
K = L& or - _'—-&_
2/ Wog Lo = =,
We adopted following choices.
1) A=2u
2) The timing estimation program CRYSTAL uses an input pulse which is 1 nsec
wide.
6. Results

Table 1 shows a comparison of the performance of our implementations.
Each row represents one locally optimal point using as criterion the item indi-
cated by *. The units of 4, Pae. Pmexs T. APT and PT are A%, (107%* W),
(10"8* W), ns, (10"12% X\2* ¥ * ns) and (1078 * W * ns) respectively in all
tables. Figure 7 shows Ppay vs T curves for different topologies, while figure 8
shows several Pma, vs T trajectories obtained during the process of optimization
using the 1-change and 2-change methods for the Data Selector and the Random

r"."'."_-.‘_."'.‘."‘.d“.i"“-.-.c LW et LTy D A LAt Rt i Jid Mk Jadh St At S LA A Y Nl Y Are A T AT B % AL A aetihin 8 B “le st wi o \“1

X,

G

Table 1. performance comparison (1 bit full adder)

-— e cmee - e e - w—- R ——

type A Pax Prax T APT PT parameter
PLA 21560 6472 10183 12.8* 2802 1303 1)

21840 5878 9241 15.3* 3087 1413 2)

21762 5503 8616 14.9* 2794 1284 3)

PLA(Berkeley) 22176 7314 11749 12.8* 3339 1504 4)

Data Selector 8100 3765 6117 15.8* 783 966 g8BB88B88
8100 3529 5645 16.5* 754 931 88848888
8190 3764 6116 15.9* 796 972 128888888

Random Logic 7742 1331 1957 16.5* 392 323 161232
9600 1683 2427 16.4* 382 398 1862423
9800 1844 2329 16.4* 378 382 162422
8600 1723 2506 16.5* 397 413 1624 33
5194 705 1096 22.8 128 248* 6822
4704 826 1018 25.9 124 264* 46 32
5136 744 1174 22.9 138 269* 6 8 23

1)d = (4.4,4.4.4.4.3.4,4,8,8,8,4,4,48,2)
2)d =(4,233,3,3,3,4,3,8,8,8,4,4,4,8,2)
3)d =(3,3,3,4,4,4,4,3,3,8,8,8,4,4,4,4.3)
4)d = (4,4,4,4,4.4,4,4,4,8,8,8,8,8,8,8,8)

Table 2 performance comparison (4 bit parallel adder)

——— — —— —— —— ——

type A Pave Prax T APT PT parameter

——— coove ——— —————————

Data Selector 4131C 16536 28218 75.3* 877761 212482 488816816 16
44550 16536 28218 B84.1* 1057230 237313 488816824 16
45409 16534 28213 84.3* 1079990 287836 488161616 16 16
44523 13248 21641 91.0* 876805 196933 488816484
42845 12301 19748 925* 782645 182669 484418884
43747 11362 17868 94.9* 741806 169567 484416484
43605 12354 20892 9B.0* 884229 202782 284816848
45441 11885 19753 100.8* 904777 199110 284816844
44523 12305 19755 101.1* 889227 199723 484818448
44849 11831 18808 103.2* 868631 194099 484416844
43747 11362 17868 103.6* 809812 185112 484416448

Random Logic 35552 6577 10335 41.1* 151014 42476 161282
34848 6734 10649 41.4* 153834 44087 181283

T R A A B S T L S Tt S A MR A AN AP AP A AT Bl I ST IE N IR it Al el Bt Sl Sl Shl S0t S QA A OES

Logic circuit. Each point takes about 1.5 minutes of cpu time on a VAX 11/750.
Many of the locally optimal solutions have identical parameter values on the
critical path, but differ in other coordinates because of different random start-
ing values.

7. Parallel Adder : The effect of loading factors

The preceding results did not take the loading on the output of the circuit
into account. When these circuits are used in arrays, this may become impor-
tant. To study this problem, we implemented two circuits for a 4-bit parallel
adder, using the Data Selector and the Random Logic 1-bit full adders of the
previous section. The results are shown in Table 2.

8. Discussion of Results

8.1. Ppu, vs T tradeoff

Figure B8 shows Pp,,-T trajectories followed by the critical path optimiza-
tion process, when minimizing T for the Random Logic circuit. The dotted
envelope shows the final tradeoff curve for P vs T. Notice that the locally
optimal point obtained by using PT as the cost criterion lies very close to the
trajzctory obtained when minimizing T. (See point a, with P = 12.5m¥W, and
T = 22.4ns.) For comparison, the optimization for PT gave us a locally optimal
point b with P = 10.9mW and T = 22.6ns, very close to point a Thus, optimiza-
tion using the two criteria is consistent.

8.2. Performance comparison among the PLA, Data selector, and Random logic.
Table 3 normalized performance comparison (1-bit full adder)

————————— —— - ——

type A Fow Pmex T APT PT
Random Logic 100 100 100 100 100 100
Data Selector 105 283 313 98 200 299
PLA 278 486 520 78 715 403
PLA(Berkeley) 288 550 600 78 852 468

Table 3 shows a normalized performance comparison of the best locally
optimal point for each layout, minimizing T. The Random Logic seems to be the
best choice in all respects except T. However, it is the fastest among the 4-bit
parallel adder implementations. The T of the 4-bit parallel adder using Random
Logic is less than 4 times the T of the 1-bit full adder, while in the other layouts
it is more than 4 times the T of the 1-bit full adder. The reason is that this Ran-
dom Logic 1-bit full adder circuit calculates the carry signal and propagates it
before the calculation of the sum signal, so the carry ripple propagates faster
:.'_' than the sum. As a result, the 4-bit parallel adder takes only 2.5 times as much
time as the 1-bit full adder. Figure 7 shows the P-T tradeofl curve of each lay-
‘" out. The curve for the Random Logic circuit is below the one for the Data Selec-
“ tor, which is below that for the PLA Hence we can order the layouts with Ran-
dom logic best, Data Selector next, and PlA last. This result agrees with our
intuition because this order is the same as the order of circuit specialization.

8.3. Comparison between our PLA and the Berkeley PLA

Both PLA's have almost the same costs, except for P. The reason is that our
locally optimal point occurs at the choice d = (4,4,4,4,4,4,3,4,4,8,8,8,4,4,4,8.2),

-7
[
! . LR B I P I IL TR, I ’)
'l"h~v't—...’n.'I.’—

e ' " ERL om0 e
..
(PRSI AP PR PEPEVIRUPL % SNEFIP T B SRA SAT S 000 I LN i S AU I . . O G O

X

LA 2 T e St i --“_T-“E'<\..-‘L"_';\‘L“‘\'.'.'.'?'.'."""‘""‘"_',,'.("""

while the Berkeley PLA adopts d = (4,4,4,4,4,4,4,4,4,8,6,8,8,8,8,8,8). The Berke-
ley PLAis therefore very close to locally optimum with respect to T.
8.4 Comparison with Myers’ work

Myers did similar performance comparisons of various 1-bit full adder
implementations [9], but did not use any optimization. His results, shown in
Table 4 below, are quite different from ours, shown in Table 3. Our results show
that an appropriate choice of layout and its optimization makes the Random
Logic circuit better than the Data Selector, and that the PLA can be made very
fast at the expense of Power.

Table 4. 1-bit full adder normalized performance comparison (Myers[9])

type A Prux T APT PT
Random Logic 100 100 100 100 100
Data Selector 45 50 125 28 72.5
PLA 105 110 170 196 187

8.5. 4-bit Parallel Adder

Tables 1 and 2 show that the locally optimal point of the 1-bit full adder is
attained with a pull-down diffusion width of the carry output stage d¢, = 2 or 3,

while the corresponding width for the 4-bit parallel adder is d¢, = 8. The pullup

width remains 2. This suggests that the critical path passes through the pull-
down of the output carry stage, which is indeed the case.

On the hand, for the Data Selector, the critical path passes through the
pullup of the output carry stage, and in fact it is the pullup width that expands
during optimization of the 4-bit parallel adder.

8.6. Comparison of the 1-change and 2change methods

Figure 8 and Table 5 show a comparison between the 1-change and the 2-
change methods when applied to the Random Logic implementation. Table 5 is
discussed in the next section. The slope of the 2-change method is steeper than
that of the l-change method, but the 2-change method reaches better locally
optimal points. Hence in this case the 2-change method works better than the
1-change method does. However, the 2-change method does not work as well as
the 1-change method for the Data Selactor, which has many more parameters.
The 2-change method took more iterations than the 1-change method and did
not obtain better locally optimal points.

8.7. Effectiveness of our optimization: Cost Improvement ratio

Table 5 below shows the average initial delay times Ty (obtained from ran-
dom starts), the average locally optimal delay time 7o, the average percent
improvement of the delay time T, and the best locally optimal delay time Tyes.
We can see from this that 2-opt performs much better than 1-opt We should note
that it is very important to choose a good order in which to try improvements,
because this saves unnecessary search time evaluating changes that are
unlikely to be improvermnents. For example, we chose the diffusion widths of the
3-input NAND gate as the first parameters tried for the Random Logic circuit.

RARNRREY #N o R g G

P Bt 20 OB san

B AL o o s om o SN v Muhuy

| 2 onslen 200 Mo d
-~
[
:I.O

«

L A A AP SR S SRS A D D U e bt Al I B R B Y R A B R A M DACRAT S

Table 5 Cost improvement of our optimization methods

P

-——

type opt criterion Tiyw Tope % improvement Tyey
Random Logic 1-opt T 29.7 19.2 33 19.1
Random lLogic 2-opt T 29.7 16.8 42 16.4
Data Selector 1-opt T 24.3 17.7 25 15.8
Data Selector 2-opt T 23.5 18.0 23 15.8
PlA 1-opt T 19.3 16.3 16 12.8

. e
......

9. References

(1] P. R Cappello, K. Steiglitz, "Completely Pipelined Architectures for Digital
Signal Processing,” IEEE Trans. on Acoustics, Speech, and Signal Proc., vol.
ASSP-31, No.4, pp. 1016-22, Aug. 1983,

R. N. Mayo, J. K. Ousterhout, W. S. Scott, "1983 VLSI Tools,” Report No.
UCB/CSD 83/115, Computer Science Division (EECS), University of Califor-
nia, Berkeley, Calif., March 1983.

S. C. North, "Molding Clay: A Manual ‘or the CLAY Layout Language,” VLSI
Memo #3, EECS Department, Princeton University, Princeton, N. J., July
1983.

R. J. Lipton, S. C. North, R. Sedgewick, J. Valdes, G. Vijayan, "VLSI Layout as
Programming,” ACM Trans. on Programming Languages and Systems, July
1983.

J. Mata, "ALLENDE User Manual,” VLSI Memo #9, EECS Department. Prince-
ton University, Princeton, N. J., May 1984,

R. Rondell, P. C. Treleaven, VLS! architecture, Prentice-Hall Inc., Englewood
Cliffs, N. J., 1983,

C. Mead, L. Conway, Introduction tao VLSI Systems, Addison-Wesley Publish-
ing Co. Menlo Park, Ca., 1980.

J. Mata, "A PLA Generator for the ALLENDE Layout System,”" EECS Depart-
ment, Princeton University, Princeton, N. J., June 1984,

(2]

(3]

[4]

(8]
(6]
(7]
(8]

[9] D. J. Myers, "Multipliers for LSI and VLSI Signal Processing Applications,”
Masters Degree thesis, Edinburgh University, Edinburgh, England, Sept.

1981,

[10] R. R Morita, "Pipelined Architecture for a Cellular Automaton,” Senior
Independent Project Report, EECS Department, Princeton University, May
1984.

PR

e W W

Dl i

Ngure 5 Poverert of e sntisal psta spUimisation melhed

L

Ngure 1. Owrall Qoveaan.

0

—————rvy

LWL W W

e

") (]
SN ' 1
Lo) '
P I |]
w o * R 8
e, 1 rm t
\ s
STAREE L ¥
O] *
Y L__J
H
-
L U A
H i
H '
-]] t
- [7 L4 =2 i g
i : . A g
= " A H "3
D - - Mw poE ! i
e | S |

hold =}

o
—
1]
[N '
[} 1 N
= .
Il.lcm mllnlg
-)
L
A R
] i] 1
1 ! “ 1 . '
s PEiamm E Y T) :
EC 13] .
{dx LI Lo :
toee o ! [— tog — ™ 5 !)
B g R
3 7 £ 183 .
Foe- 1 - ' P, M | IS | | IR |
] '] 1] t -
P P FRIRE 3
| e e I T o S I S o B I O O I R . I
“mmll W “m.rlm[v_m T.mei:tm .uu‘ ||||| m ! 4" : 1 i)
t 3 . 2 H
togo b8 i tedl WP § 3 1! b b oL
. ! i I O S ' Lo SRR = - S Lo gt b= 3 |-+ 3 LY 0,
- 13 <@ g3
BEIREIREE R AR AN AN EAEE B
& L. (I ! S ' — Lo

]
<Al
o | &1
L oicl
. 4|4
¢ L s
A -3 c
o g
. x
Figure 4. PLA
, ¢
° 8 —{>— G
—T1
e
A —]
G inge
- l—' o> 5
Figure 5. Data Selector
; .
I—‘ %’ z %}‘“ I S B
- 8L G—[«o ,A—{% '_'ﬁ c;—{{ «—4 1
A
A= s L————-li "
h Fiqure & Rondom Logic
@
.- S
£ ST e T T e e T e

T TV W T LTI AT 4T T S T T e AT R
A A Tl 'S agi 0% A A A 8 W e A -3 & 20 hasiii 8 o “aih Mnlt Yl “al i Sl S P T TR ET A “

B]
(mw)
F-gu""'7
| x PLA
€ Dota Selector
+ Random Log.c
\u
10 T
v
\ 1 .
\\-; -
4@"
Wy
3R _ _ LA
\»
Ne S0 00
) [
: Nt
Saa'? -
~ Cpta Selector
\$
\\
\l " * + *
‘—‘iﬁ:-di—"‘-’pcndom
LOS-C
i T ¢ns)
10 20 30 4.0
e e : — . —_ S S —
pmgw 1
(muJ F'gureg
| +—+ 21-change
! ¢ | ez lochanse
\
% X
| .
' * \l. |
2 p—=r T]’ _—
'. {
: \ 2-changt |
. \ | 'l
]
; | !
i
|
| |
l
| i _
— T (s
10 20 30 40
_ 19

ATt A A A, Al A L P S S e RS

Lahagrum SO

K Fink IMACS Internstona! Symposivra On
T
PARTIAL DIFFERENTIAL EQUATIONS
| 19, 20, 21 June 1984 Lehigh University - Bethlehem, Pennsylvania 18015 - USA
e
Efficiency of Parallel Processing in the Solution of
Laplace's Equationt
@ William C. Moore
‘ Informaetion Systems Laboratory
Dept. of Electrical Engineering
Stanford University
Stanford, California 84305
Y Kenneth Steiglitz
Department of Electrical Engineering and Computer Science
Princeton University
Princeton. New Jersey 08544
ABSTRACT . as they pass through the processors. Using this
(s A parallel processing architecture for the solution epproach, problems with arbitrary numbers of dimen-

of partial differential equations by point iteration is stu-
died. Grid points are stored in a circulating memory
and identical processors are spaced around the store.
Computer simmulation of the solution of Laplace’s equa-
tion with a simple point iteration relaxation algorithm
for one-, two-, and three-dimensional problems shows
that convergence rates intermediate between those of
the Jacobi and Gauss-Seidel methods are obtained.
Eardware utilization eflficiency (speedup relative to the
number of processors) of 40-60% is achieved with as
many as N processors, where N is the number of non-
boundary grid points. Furthermore, for up to A/ 2 pro-
cessors, the efliciency remains above 90% in the one-
dimensional case, and above 75% in the two-dimensional
case. There are sharply diminishing returns for using
more than N/ 2 processors.

1. Introduction

The solution of partial differential equations taxes
the largest and fastest present-day general-purpose
computers. Physically meaningful problems often need
huge amounts of time and space. Clearly. with the
decreasing cost of large-scale integrated circuits, it
seems profitable to build special-purpose devices for
solving partial differential equations which use many
identical processors operating in parallel. This paper
describes a study of a circular arrangement of proces-
sors and a circulating store. Simulsation results for the
very simplest numerical problemn are described: the
solution of Laplace's equation with Dirichlet boundary
conditions, using point iteration methods.

When explicit, point iterative methods are used to
solve partial differential equations, & grid point value is
updated by replacing it with some function of the values
at neighboring points in the grid. In the system
describec here, the grid of points ir mapped by a raster
scan into a circulating serial bit stream. The bit stream
passes through processors that update the grid points

sions can be treated. In addition, identical processors
can be added without reorganization.

In the Gauss-Seidel method [B] the grid point
values are updated in an orderly, row-by-row and
plane-by-plane fashion, and new values are used as soon
as they become available. In the Jacobi method [B] old
grid point values are used throughout each iteration.
When the circuleting store system uses one processor,
the calculation reduces to the Geuss-Seidel method,
when it uses one processor per grid point, it reduces to
the Jacobi method. When & number of processors
between these two extremes is used, there is a compli-
cated mixture of old and new values used by the proces-
sors. The purpose of this paper is to investigate experi-
mentally the rate of convergence as a function of the
number of processors, and thereby to evaluate the
potential hardware utilizetion efliciency of the circulat-
ing store system. The results show that the speed of
convergence is, as might be expected, intermediate
between the Gauss-Seidel and Jacobi methods.

2. Circulating Store Configuration

We study here a synchronous circuit consisting of a
long shift register arranged in a circle (the main
memory of the system), and a number of independent
processors tapping and updating the stream at various
points (see Fig. 1). Similar configurations bave been
suggested by various workers et different times for
applications such as Monte Carlo calculations [1] and
image processing {2), as well as partial differentia.
equations [3,4,5). A fixed network of icroprocessors
which communicate locally has also been studied [6.7].
and these two arrangements are equivalent when there
is one processor per grid point.

If each grid point is mapped to a set of contiguous
bits in the streamn, some bits in the sel can represent
the value of the function at the grid point, while the
remaining bits can be used to flag boundary values,

[o — e wee . .
TA.s worq wes supporied by NSF Gran: ECS-8120037 U & Army Research-Duraem Gran:
DAAG28-82-X-0085. DAROA Comreci NOOC14-82-K-0549 and ONR Grent NOOO14-83-X-0275

fams AIOU G sae aay ZEM Gn s e g

v r

o

T T W vy v

-

T

I T S S e e P e B

store space-dependent coeflicients, and possibly hold
other information. We will call the set of bits in the bit
stream corresponding to a grid point simply a "grid
point value.'" At any given time each processor must be
able to change the value of the grid point which it will
update, as well as read the values from those grid
points whose values are needed to do the update calcu-
lation. For example, with a 5-point molecule in the
Gauss-Seide! method for a two-dimensional Laplace
equation, each processor must have information from 4
neighboring points, as shown in Fig. 2.

There is no direct communication between proces-
sors. With each mayor clock cycle, the circular shift
register shifts one complete grid point, each processor
reads the necessary information, and if the grid point
currently associated with a processor is not a boundary
value, it is updated. Each grid point can have a bit
reserved to indicate convergence, based on the change
from the previous value of the function, and that bit can
be kept current every time the value is updated. A
counter can then be inserted in the circulating store to
detect the condition where all the points have con-
verged. Alternatively. a global counter can receive this
information from every processor every major clock
cycle. We will assume this latter methed in the simula-
tion because it detects convergence sooner and gives
finer resolution in the measurement of running time,
but obviously it is not necessary for the operation of the
device.

Note that no additional time is required to observe
the changing grid point values on a graphics screen,
since the bit stream can be passed serially through
such a display device without interfering with the calcu-
lation.

We emphasize that the processors work in parallel,
and so the answer from one processor is not available
until the next major clock cycle. Thus, as was pointed
out before. the values used in any one calculation are in
general of various ages.

3. Method of Performance Evaluation

When all grid points have passed through all pro-
cessors once, we say that one iteration has taken place.
This corresponds to each bit in the stream being shifted
all the the way around the circle. The time required for
this 360° shift depends on the major clock cycle time
and the number of grid points. (We assume that a pro-
cessor completes its function during one major clock
cycle.) Since the processors operate in parallel, the
time does not depend on the number of processors; an
iteration represents an amount of time that is indepen-
dent of the number of processors. Neglecting such
things as time for loading boundary values, the number
of iterations required for convergence is a reasonable
measure of real time required for convergence, and can
be used to compare the performance of different sys-
tems. Eowever, for systems with different grid sizes or
representing different eguations, en iteration may
mean diflerent things and thus cannot serve as a basis
for comparison. Note also that there is no reason that
the number of iterations required for convergence need
be an integer. (Recall that we are using & global counter
to detect convergence.)

Since the number of iterations required for conver-
gence is proportional to the time required for conver-

gence, & reasonable idea of the performance of a sys-
tem as & function of number of processors can be
obtained by investigating the relationship between the
number of iterations required and the number of pro-
cessors. If we let i#s(n) be the number of iterations
required witb n processors, we can define

to be the efficiency with n processors, the efliciency
with one processor being 100%. In general the efficiency
will be less than 100%, but it is not impossible for it to
exceed 100% (e.g. two processors can be more than
twice as fast as one).

4. Test Problem: Laplace's Equation

A computer simulation of the scheme described
above has been carried out using Laplace's equation {
Vif = 0) on a line, in a square, and in a cube, with Diri-
chiet boundary conditions. Explicit iterative methods
for Laplace's equation are widely used, and their con-
vergence characteristics are well known. (See [8], for
example.) The one used in the simulation is the sim-
plest: Each grid point is replaced by the average of the
points immediately adjacent (not diagonal) to it. Thus,
for a k-dimensional problem, a point is replaced by the
average of the 2k points adjacent to it on the rectil-
inear lattice of grid points in k-space.

As suggested above, the grid is mappec to a serial
stream by using a raster scan; the end of one line is
connected to the beginning of the next. Some experi-
ments indicated that using other scanning patterns,
such as boustrophedon (back end forth, as the ox
plows) has little if any effect on the resulits.

The convergence criterion used is based on the
maximum relative change in function value at the gric
points. If the old and new values at grid point k are
respectively g'(k) and g k). then we say we have
converged at point k if at the most recent update at
point k we have

g™ (k) - g*(k) < g'(k)

where ¢ is the convergence criterion. lf at some
moment we have converged at all grid points, we say
tbe computation itself has converged.

Problems with a variety of different dimensions.
grid sizes, boundary values and tolerances were simu-
lated and we next present some numerical results.

5. Experimental Results

Figures 3-5 show plots of efficiency e(n) vs. n for
three typical problems, of one-, two-, and three-
dimensions. In all three cases the convergence toler-
ance is ¢ = 0.002, and non-boundary grid points have
the initial value 0.

The one-dimensional grid has 200 points, including
boundary points. One boundery value is 0.0 and the
other 1.0. The two-dimensional grid is 20%20 points, with
the square boundary having the value 1.0. The 10x10x10
point three-dimensional case also hes its boundary
values equal to 1.0 everywhere.

As expected because of the gradual transition
between the extreme cases of the Gauss-Seidel and
Jacobi methods, there is a general downward trend in

. e v

e s T e, et AN - -
. e e % L -

- st
| PPN AT

H:
b

. o St - T
PR N S SURT WA W WIS SO SRR LA T, ¥ WG AP P,

efficiency. Furthermore, the efficiency decreases from
100% to about 50%, as would be expected from the fact
that the Jacobi method for this problem is theoretically
asymptotically one-half as fast as the Gauss-Seidel [8].
An efliciency of 50% with n processors means that we
are converging n/ 2 instead of n times as fast as with
one processor.

The diflerent dimensions give rise to diflerent
curve shapes, but those shapes did not vary much as
convergence tolerance, grid size, and boundary condi-
tions were varied. In the one-dimensional case,
efliciency is near 100% as long as the number of proces-
sors is less than half the number of non-boundary grid
points, but at that point, efliciency falls of! sharply to
about 50% with 200 processors. In two dimensions the
efliciency curve has two fairly distinct levels, with the
break point agein coming at approximately half the
number of non-boundary grid points. The efficiency plat
for three dimensions seems not to have two distinct
regions, but falls off gradually. In ell cases there is a
great deal of local jumping up and down, due evidently
to the particular way in which the processors use the
information of neighboring processors in particular
arrangements.

The maximum absolute speed is obtained by having
N processors, where N is the number of non-boundary
grid points, but there are diminishing returns for using
more than about N /2 processors. In any particular
application the choice of number of processors will
depend on the cost of a single processor relative to the
cost of the whole system. The efficiency with A proces-
sors remains above 40%, sometimes even getting as high
as 85%.

8. Over-relaxation

A preliminary test was made of e simple over-
relaxation strategy in the one-dimensional cese. kLere
the new value at each grid point is defined by

g((ox) = 9‘ + a(gé“”-g‘)

where gé‘”) is the value that would be adopted at this
step 1f over-relaxation were not being used, and a > 1 is
the over-reiaxation parameter. When a is taken to be
1.5 in the one-dimensional case described in Fig. 3, the
number of iterations required by one processor is
reduced from 397,584 to 212,057, an increase in abso-
lute speed of 87%. Figure 6 shows a plot of the efliciency
vs. n for a = 1.5, It is of the same general character up
to N/ 2, showing efliciency near 100% in this range, but
past that point the iteration rapidly becomes unstable
(with the efliciency therefore going to zero). Further
work is needed to explain and predict the stability of
the over-relaxation method for the parallel computation
scheme discussed here.

7. Conclusions

The simulatiorn results for the circulating store
method and the standard point iteration method are in
accord with theory, and they are encoureging: n pro-
cessors never operate siower than about n/2 times as
fast as one. Furthermore, for up to AN/ 2 processors,
where N it the number of non-boundary grid points, the
efliciency remains above 90% in the one-dimensiona!
case, and above 75% in the two-dimensiona! case. There
are sharply diminishing returns for using more than

N/ 2 processors.

The approach is applicable to linear and nonlinear
problems of any dimension with any boundary condi-
tions, makes eflicient use of large numbers of identica!
processors, and has a very simple, linear, interconnec-
tion pattern. More work is needed to determine the sta-
bility and convergence rates of the over-relaxation
method, and more sophisticated and potentially faster
methods, in higher dimensions, for more ambitious
problems.

8. Acknowledgments

The circulating store configuration for solving
differential equations was developed with the co-auttors
of [5]: J. Bruno, A. C. Davis, M. Kostin, and C. Wymar.
Also, we thank R. J. Lipton for helpful comments.

9. References

[1] R. B. Pearson, J. L. Richardson. and D. Toussaint. “'A
Special Purpose Machine for Monte-Caric Simuia-
tion,"” Institute for Theoretical Physics Report N3F-
ITP-82-98, University of California, Santa Earbara.
California, 1981.

[2] C. Rieger, “ZMOB: A Mob of 256 Cooperative 260A-
Based Microcomputers,” Conference paper, Com-
puter Science Department, University of Maryiand,
College Park, MD 20742.

[3] C. T. Leondes, and M. Rubinofl, "DINA. e Digitel
Analyzer for Laplace, Diflusion and Wave Equa-
tions,” 7rans. AJEF . Pt. 1, Vol. 71, Nov. 1952, pp.
303-303.

[4] R. F. Rosin, “'A Special Purpose Computer for Solu-
tion of Partial Diflerertial Eguation: and other
lterative Algorithms.” JECE Trans on Electronic
Computers , June 1965, pp. 488-4390.

[5] Bruno, J., Davis, A. C., Kostin, M., Steiglitz K and
Wyman, C., "'Linear Orgenization of a Computer for
the lterative Solution of PDE's,” unputlished
manuscript. Princeton University, 1971.

[8] Paker. Y., ‘‘Application of Microprocessor Networks
for the Sclution of Diffusion Equation.” Mathematirs
and Computers in Simulation. Volume 19, No. 1,
March 1877.

[7] Doenin, V. V.,“Pareallel Digital Network Processor
end Transient Stability Analysis in the Processor's
Logical Network.” Avfomatika i Telemekhanika .
(in translation), Vol. 40, No. B, August 1979 pp.
139-148.

[8] W. F. Ames, Numerical Methods for Partal
Differential Equations, Barnes & Noble, New York,
1969.

Ty Ty vy

s i ae gt 2

-
.

’

wer

ATaaciciiia ~ RO e

Fogaite it der SE SEEL B e A L

Fig. 1 Circulating store configuration.

Fig. 2 Data access of one processor in a 5-point itera-
tion for a two-dimensional problem.

IOO%]
ONE DIMENSION
80%
>
[S)
4
o
o
B A
W
60%
40%g %0 100 50 20

NUMBER OF PROCESSORS

Fig. 3 The efliciency vs. number of processors for a
one-dimensional problemn; 200 grid points.

PRy T AT, T . T » TR MR R A g v S A et Tt i I A N o S A C MG » P

[}

R o

M S At A i At A i S Al A S ™ ol P e e AR~

100%

8

TWO DIMENSIONS

EFFICIENCY
3
3t
-
- S

70%
€60%
50‘/.0 00
NUMBER OF PROCESSORS
Fig. 4 The same as Fig. 3, for a 20x20 two-dimensional
probiem.
100%

THREE DIMENSIONS

80%]

EFFICIENCY

ulm[

€0%

40%5

Fig 5 The same as Fig. 3. for a 10x10x10 three-

dimensional problem.

"“V ‘ - ‘- \‘-.. ._""' :

. . - -~ . - ~ Y o Y. - -
PP AP VAT A S P YL WA ST 0 S0 SR AR W & AR WS S AR AR

400

200
NUMBER OF PROCESSORS

L At Sadh St il

EFFICIENCY

100%
80%
ONE DIMENSION
60%
40%
20%
= UNSTABLE
o ¢/° J

0 SO 100 150 200
NUMBER OF PROCESSORS

Fig. 6 The same as Fig. 3 for the over-relaxation
method with a = 1.5.

s S .
o l“ "_

LR SR o o
.]
PRI

—

3

28 - 1IEEE TRANSACTIONS ON ACOUSTICS. SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-32, NO. 1, FEBRUARY 1984

Optimal Choice of Intermediate Latching to Maximize
Throughput in VLSI Circuits

PETER R. CAPPELLO, memsiR. IEEE, ANDREA LAPAUGH, MEMBER, 1EEE, AND KENNETH STEIGLITZ, FELLOW. IEEL

Abstract-1n many computational tasks, especially in signal processing.
it is the throughput that is important, rather than the latency, or delay,
If a special-purpose VLSI chip is designed for a particular signal process-
ing task, such as FIR filtering. for example, the maximum clock rate,
and hence throughput, is determined by the depth of the combinational
logic between registers and the time required for the distribution and
operation of the clock. If the combinational logic is sufficiently deep
(in bit-parallel circuits, for example), the throughput can be increased
by inserting intermediate stages of clocked latches. This is at the ex-
pense of increased area and delay to operate and clock the intermediate
registers. Roughly speaking, the strategy amounts to using more of the
chip area to store information useful for pipelining.

This paper investigates the optimal tradeoff between the degree of
intermediate latching and cost, using the measure AP, where A4 is the
chip area and P is the period (the reciprocat of throughput). We derive
expressions for the time and area before and after intermediate latch-
ing. using the Mead-Conway model, both for the cases of on-chip and
off-chip clock drivers. The results show that significant reductions in
AP product (reciprocal of throughput per unit area) can be achieved
by intermediate latching in many typical signal processing applications,
for a wide range of circuit parameters. The array multiplier is used as
an example

I. INTRODUCTION

HEN certain tasks are implemented with special-purpose

VLSI chips, it is often the period P (time between suc-
cessive outputs) that is crucial, rather than the latency or delay
T This is especiallv true in signal prccessing. where typical
tasks such as filtering and discrete Fourier transformation
often have high volume requirements and relatively lax delay
requirements. Recent work has described bit-serial and bit-
parallel VLSI architectures that do in fact allow the period to
be equal to the clock period (see, for example, [2], [4}-[9].
[12]). In [5]. {7} aclass of these circuits is called completely
pirelined. In this paper, we take up a different question, that
of inserting intermediate stages of latching so as to maximize
the rate at which the clock can run without a disproportionate
blowup in area requirements. We will use the criterion of mini-
mizing the AP product, where 4 is the area of the VLSI circuit

Manuscript received August 10, 1982 revised April 12, 1983. This
work was supported in part by the National Science 'oundation under
Grant ECS-8120037, U.S. Army Research-Dutham under Grant
DAAG29-8§2-K-0095, and DARPA Contract N00014-82-K-0549. A
preliminary version of this paper was presented at the 1983 ILCLE
International Conference on Acoustics, Speech, and Signal Processing,
Boston, MA, April 14-16, 1983.

P. R. Cappello was with the Department of Electrical Engincering and
Computer Science, Princeton University, Princeton, N} 08544, He is
now with the Department of Computer Science, University of Cali-
fornia. Santa Barbara, CA 93106.

A. LaPaugh and K. Steiglitz are with the Department of Llectrical
Engineering and Computer Science., Princeton Unwversity. Princeton, NJ
08554,

¢ ¢

Fig. 1. Two-phase clocked latches between stages of combinationsl
logic.

and P is the period. The AP product can be thought of as the
reciprocal of throughput per unit area. and a completely
pipelined circuit optimal with respect to this criterion can be
claimed to make best use of chip area. Leiserson and Suxe
[14] treat the related problem of redistributing latches so as
to decrease period, but they do not consider area or clocking
penalities.

We assume that the circuits we discuss are designed along the
lines described by Mead and Conway [1]: typically that a two.
phase clock is used to transfer information between regisrers
(or latches), and that these registers are separated by combina-
tional logic. The following sections are devoted to modeling
the time and area requirements of the latches, the combina-
tional logic, and the clock driver. We then consider the overall
circuit and investigate the optimal choice of the amount of
latching for the two cases of on-chip and off<chip clock drivers.
While the assumptions made about first-order circuit behavior
pertain to nMOS technology, the analysis technique uses di-
mensionless parameterization and is applicable to any situa-
tions with deep combinational logic—typically bit-paralle] cir-
cuits. A representative tradeoff curve is shown for an example.

II. CLock TIMING

We will adopt a version of the two-phase clocking system
described by Seitz in [1, ch. 7], a typical stage of which is
shown in Fig. 1. Fig. 2 shows the corresponding timing dia-
gram: First, we must drive the phase 1 clock signal ¢, high.
taking time tq.cx (the clock dnver time). We then need
minimum time £ 41, (the delay time) to charge the input stage
of the combinational logic. Phase 1 must then go low (taking
time 200k), and phase 2 must then go high (also taking time
Loiacr). We must insure that there is a minimum time 7,5 dus-

0096-3518/84/0200-0028501.00 © 1984 IEEE

P ——

¢!

L ara i i e Sew A MM MPM oMM A M)

CAPPELLO eral: OPTIMAL CHOICE OF INTERMEDIATE LATCHING

29

' \

teloer

Fig. 2. Clock-timing diagram.

ing which both clocks are low; otherwise we run the risk that
shew between the clock phases will cause both clocks to be
on at the same time. This brings us up to the point where the
combinational logic has already started to work,

The input values propagate through the combinational logic,
taking some time fy4gc. This time includes the time during
which @, is brought down and ¢, is brought up. The time
1,,4¢ Will ordinarily dominate the clock-interchange time, but,
in general. we need to set the time for this operation to

P = max (Yoge - 2etock * 112)

where, for safe operation of the circuit, ;4 must of course
be taken as the maximum delay time of the combinational
logic.

We next need to transfer the output values of the preceding
logic stage to the input of the latch whose output is controlled
by &,: that is, ¢5 must remain on for a minimum charging
time f (the preset time). The ¢, clock signal must then be
brought down (taking another clock driver time fgyock, and
anuther dead time (ry;) provided to insure nonoverlap of
clocks in case of clock skew.

The minimum period P of the circuit is therefore

P= 2ok * aelay * tser + 121 + MaX (fiogic . 2cock * 112).

To be more accurate, we might want to take into account the
tuct that the upgoing and downgoing clock waveforms are
not completely symmetric: but the term ..k can be taken
tu represent the average of the upgoing and downgoing clock
times in a single driver. In a multistage driver the stages alter-
nate up and down, and we can take f¢ock (0 be the sum of
the averages of the upgoing and downgoing times along the
driving chain.

III. LATCH TiME AND SPACE

We next want to express the time delay of the latches in
terms of basic units that are determined by the technology.
Fur this purpose, we consider the nMOS inverter with a mini.
mum size pulldown and a pullup/pulldown ratio of 4 to be
the basic cel], with area A, pulldown gate capacitance C, ef-

¢« 8 e e .. - . e .
;o Lt e - - ..

A e et e B B Bs

teiock

‘g .I

Fig. 3. Details of the clocked latches, showing pullup and pulldown
effective resistances and capacitances.

fective pulldown resistance R, and pulldown time (transit
time) r when driving the input of an equal size inverter. We
refer to such a cell in what follows as a minimal inverter.

Now inverters in the latches are driven through pass tran-
sistors, so the discussion in [1] shows that we should choose a
pullup/pulldown ratio of 8. The time required for the second
inverter to charge its load is therefore approximated by the
following RC constant:

Laelay = (Rl + Rpas) (Cload + Cpass)

where the R's and C’s are shown in Fig. 3. Assuming that
the pass transistors are minimum size, Rpass = R and Cpa = C.
Also assuming that the capacitive load (input to the combina-
tional logic) is minimal, we get

Toetay = AR /R + 1)1
=2(Ly/Wy+ 1)1

where, from now on, we express resistance in terms of the
length-to-width ratio of the transistor

R, =(L,/W))R.

If the pullup/pulldown ratio of the latches is taken to be 8

hAolaile Sl St Sl Y
Cp e AN IMAMAEN T At aiin Sl Anl Pl Sd S

30

(as mentioned above). we can write the normalized delay
time as

Ldelay /7= 2(8r + 1

where r = L, /Iy is the size of the latch pulldown. Whenr =}
the pulldown transistor of the latch inverter will be twice as
wide as the corresponding transistor of the minimal inverter,
but the pullup ‘pulldown ratio is &, not 4, so the pullup tran-
sistor will then be the same length as in the minimal invertes.
The area of such a latch inverter with r= % will be only a little
larger than that of a minimal inverter. perhaps about 25 per-
cent larger. Thus, the choice of r= .:1 speeds up the laich with-
out much area penalty. and we will use this value in this paper,
although it could be kept as a parameter,

Using a similar argument based on RC charging times, the
preset time is

L 7=(8r+1)(1;r+ 1)

The 1:r termi comes from the input capacitance of the second
inverter. which loads the first inverter. To see this, write

Croad = (LW /LW)C= (W, L)C=(1/NC

where L, = L = If’ are minimum size.

The latching area is easy to write down. Assuming that the
pass transistors are the same size as minimal inverters, and that
the latches have area 1.254, each two-phase latch requires nor-
malized areu

Anrcn’4=2(1.25+1)=4.5.

IV. ComBINATIONAL LocGic Tiamr AND SPACE

We want a fairly general mode! for the combinational logic
that is sandwiched between the latches: such logic may be
built from NAND and NOR gates, pass transistors, or some com-
bination of the two. We will assume that the typical logic
stage is a uniform array of n X k logical elements, each of
which has an area Agjen, and a delay 7genm. Where

Aelem =a4
and
Telem = P7

This array will be thought of as n rows by Xk columns, with a
maximum delay path from left 10 right of k elements. Since
logic stages are not usually so uniform, the a and § parameters
must represent average values for the combinational logic. If
gates are built out of inverters and coupled directly. for exam-
ple. § will generally be determined by the fan-out factor of
the logic and the size of the inverters. An average fan-out fac-
tor of 3, using gates (with a pullup,pulldown ratio of 4). will
result in 8=]2, because we must allow for the worst case in
the propagation of logic, where all signals are upgoing. To re-
duce this to a value closer to that of a minimal inverter. we
expect to increase the area to, say. twice that of a minimal
inverter. Thus, we can take values of a=2 and f=4-12 as
tvpical of combinational logic implemented with arrays of
gates. We should also note that the value of a should be se-

CYLYIV YW

N eWgq VU W M W & W =,

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-32, NO. 1, FEBRUARY 1984

lected to reflect the space per logical element required for
power and ground lines.

We will assume that the nominal circuit has one typical log:.
stage between a pair of two-phase latches, and we then con-
sider the insertion of (m - 1) latches equally spaced in the
combinational logic, m 2 1. The case m =1 then represent:
the original situation. We assume the latches can be made 1
“fit” well; that is, that the combinational logic is arranged
regularly enough so that stages can be pushed apart and col-
umns of latches inserted. The total time required for the logi.
is therefore

logic /T = B(k/m)
and the area
Ak)gic/A = Odl\':

where d = n’k is the height-to-width ratio of the originul logi:
block, another dimensionless parameter. usually assumed to
be 1.

V. ON-CHip CLock DriIVER TIML AND SpPacE

If we use an on-chip clock driver, we want to use a mulii-
stage version as described in [1]. since the driver will hiave =
large capacitative load. especially if there is an appreciatic
amount of intermediate latching introduced. We assume tha:
clock distribution is on metal, so that propagation delay along
the wires is small. Each stage is assumed 1o have a pulldown f
times the size of the preceding. so if there are S stages driving
Y pass transistors. each with minimal capacitance C.

f=YUs

If we start the clock driving with a minimal inverter, the no:-
malized delay of such a driver is approximately

2.58.

tarive/T =

The factor of 2.5 results from averaging the pullup time of 47
and pulldown time 7 along the inverter chain. (If we do not
insist that S is an integer, and we minimize this delay with re-
spect to f, we get the value f=e [1]. But Sis an integer.)

This estimate for delay assumes that we insist on a globally-
synchronized clock—that the clock signals at the input of the
driver can be used anywhere else without concern for synchro-
nization. Caraiscos and Liu [11] have pointed out that the rise
and fall times of the clock waveforms may be much smaller
than the absolute delay, and that using a local clock may allow
higher throughput, at the expense of using local clock signals
that must be made synchronous with the signal itself at difici-
ent points on and off the chip. Sending the clock along with
the signal will incur other costs, of course. (For a discussion of
the virtues of a globally-synchronized clock in signal process-
ing, see [10}). The analysis in this paper is conservative in
the sense that the resulting degree of latching and increase in
throughput is on the low side. (We can avuid the area and
delay penalty incurred by using an on-chip driver by moving
the clock driver off-chip. That case will be discussed in more
detail in Section VII.)

“‘v{r‘v_vJ‘_-r-_ LA e an. aARCEINENL AT il e s e ol ajiiey

CAPPELLO eral.: OPTIMAL CHOICE OF INTERMEDIATE LATCHING

We must also consider the area contribution of the clock
driver in relation to the rest of the circuit. The normalized
area of the driver is

L I
AwmelA=S f1=(Y-DI(f- D).
i=0
Next we look at the overall time and space requirements of
the circuit.

VI. OPTIMIZATION OF AP PrODUCT WITH AN ON-CHIP
Crock DRIVER

We can now write the total minimum normalized period
Pit = p in terms of our parameters as follows:

P=5fS+25+ 1y + max (fk/m, 5fS + 7,3)
where, as above,
f5 =Y =(m+ 1)n=number of lines driven

and 7yy = t43/7, T3; =2,y /7. Similarly, the total normalized
areaagrea/A =ais

a=2(Y-1D/(f-1)+45Y +akn

where the factor of 2 accounts for the fact that we must have
two drivers, one for each phase. (These can be combined to
some extent, but the total area is still nearly twice that of a
single driver.)

We now have the function ap(m, §), where m and S are dis-
crete parameters. The number of stages is never much larger
than In Y, since the optimal choice of f is usually around e.
In most cases of interest, therefore, it suffices to take the
minimum of gp for S=1,---, 16, producing what we call
ap(m, =)

ap(m, *#) = ming ap(m, S).
The range of m is certainly between | and k, so the optimal
choice of m can be determined simply by
ap(*, *) = min,, ap(m, *).
The gain G in AP product achieved by latching is, therefore,
G =uap(1, #)/ap(+. *).
VII. THE CASE OF AN OFF-CHIP CLOCK DRIVER

As mentioned in Section V, if we allow the clock driver to
be off-chip, we can drive the larger capacitive loads incurred
by extra latching with essentially no penalty in clock delay or
driver area. The normalized period and area can then be
written

P = 2Teiock + 25. + 79y + max (Bk/m, 27qock + 712)
a=45Y +akn

where we have assumed some delay of 7 ,ck = felock /7 fOr the
clock rise and fall times. The ap product is therefore a func-
tion of only one unknown parameter, m,

With these changes ina and p, the same methodology applies—
a numerical example will be given in the next section. Note,

- P - | L LA

Y.’ .« = e . ot e -
. i - . . . o - ey -

T

= o As aan Saut bt e et e St hdh Ik AN
Sl Pt oSl A

LN B N,
P W Y T L

B et St il it Skt BT

3

however, that now the optimal value of m will occur roughly
near the breakpoint where fk/m = 274,y + 73, and that these
times are both highly uncertain and small in size. The analysis
in this case is therefore much less reliable, and much more sen-
sitive to unmodeled effects such as propagation delay, than in
the on-chip clock driver case.

VIII. NUMERICAL EXAMPLES

We now give some typical numerical results. For this pur-
pose, we consider a 16-bit array multiplier, implemented by an
array of full adders, as described, for example, in [2]. We also
assume that the full adders are implemented with gates: each
full adder will then be about 3 gates deep. The carry propaga-
tion will require an array that has a maximum depth of 2 X 16,
so altogether the combinational logic will have k = 100. (This
is consistent with the value of *‘113 gate delays™ given in [3].)
Say that each gate takes about double the area of a minimal
inverter (a = 2, optimistic for area, and hence pessimistic for
our purposes), and that, as discussed in Section IV, = 6. The
array is roughly square, so that d = 1. Finally, we will as-
sume that clock skew is not an important problem, and take
T2 =7y =4

Fig. 4 shows a plot of normalized period p(m, *)/p(1. *):
normalized area g(m, *)/a(1, *); and normalized AP product
ap(m, *)lap(1, *) versus m. The period as a function of m
decreases sharply (roughly as 1/m) uniil the combinational
logic time is dominated by the clock-swapping and dead time
(that is, until 155 = 2tgock + 232). After this point the clock-
driving time will determine the minimum clock period and it
no longer pays to increase m, because the area will increase
with no payoff in speed. The minimum value of period occurs
close to the minimum value of 4P product, Thus, in theory,
the period can be decreased somewhat from its value when
the AP product is minimized, at a slight cost in area. In prac-
tice the optimal values are almost always nearly equal, and
sometimes identical, because of the discreteness of the param-
etersm and S.

Fig. 5 shows a plot of gain G in AP product versus the depth
of combinational logic k, for the values a=2 and §=4, 6, 8§,
12. The graph shows significant gains in AP product (more
than 2) over the unlatched case when k 2 50 and 3 2 6. Even
when the gates are as fast as a minimal inverter (worst-case
delay factor §=4), there is an AP product gain of 2.2 when
k =100. Note that a larger value of @ would only improve the
gain.

We conclude by looking at the actual numerical values of
the minimum clock periods and areas involved in this analysis.
Taking the k=100, a =2, § = 6 case above for a hypothetical
16-bit array multiplier, and assuming 7 = 0.3 ns for current tech-
nology, we get a period of P=210ns with no intermediate
latching, and an optimal period of P=66 ns with m=6 (5
intermediate latching stages).

The area before latching is 2.11 X 10%4, which at A= 1.3y
(3u line width) and a 225\ inverter is about 10.7 mm?2, After
the intermediate latching. the area becomes 12.1 mm?; cer-
tainly a modest increase in area for about a threefold increase
in speed.

| o SR M CaY) £ " S LIt e A SO -~ £/ 50 Tl Sl i R B 2R B0 T T Tt i Sah v i te on) Y e Sl O -P“‘W
[
-
| 32 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-32, NO. 1, FEBRUARY 1984
|
|
! 20 ; large predicted speedups in possible clock rate may not be
! . . .
| : realizable in practice.
)
[o IX. ConcLusiONns

®

i

PER:OD

NORMALIZED PERIOD, AREA , AND AP -PRODUCT

!

|
© I 20 b o] 40
m

Fig. 4. Normalized period, arca. and 4P product versus m for a = 2,
B=6.k =100. The parameter n - 1) is the number of intermediate
latching stages.

10 —T
1
i
1

GAIN tN AP - PRODUCT

cG SC 10¢ 15C 20C
[}

Fig. 5. Gain in AP product versus combinational logic depth Xk for
g=4.6. 8,12 Thc parameter g is the delay of a combinational logic
element, normalized in terms of that of a minimal inverter.

The preceding example assumed an on-chip clock driver.
When we use an off-chip clock driver at presumed small cost.
as discussed in Section VI, we naturally get much faster solu-
tiuns. In this example, the optimal value of period with the
parameters of Section VII and 7440 = 4 (assuming a very
sharp clock rise time and fall time), minimizing AP product,
is 18 ns, compared with the unlaiched value of 191 ns. The
area goes from 10.6 mm? with no latching 1o 16.5 mm? with
latching, This large increase in area reflects a corresponding
increase in the density of latching: 26 (m = 27) latching stages
are introduced. We emphasize that in the case of an off-chip
clock driver. the numerical values of the parameters 1,5 and
Taocr dre very uncertuin and the optimal values of period, area,
and latching density are sensitive to these parameters. The

We have modeled the timing of a generic pipelinable VLS| cir-
cuit in which there are combinational logic stages separated by
latching stages driven by two-phase clocks. Anarray multiplic:
is typical of such a configuration. We then investigated the
effect of introducing intermediate latching stages. especialiy
the tradeoff between increased throughput and increased arcu
Expressions were derived for area and minimum clock period.
normalized in terms of minimal inverter area and delay. and
we showed that optimal choices of the number of clock driver
stages (S), and the number of intermediate latching stage-
(m - 1), can be made by simple enumeration.

The numerical results illustrate the choice of Jatching density
in a typical signal processing application. According 1o ou:
model, a 16-bit array multipher with gate logic and an on-chip
multistage clock driver can be clocked about three times fastcr
with about a 13 percent increase in area using five intermediutc
latching stages. This decrease in period is also accompanied by
an increase in the latency, or delay. of the muluplier.

Higher throughput can be achieved with an off-chip cluck
driver, but the parameters in that case are less well known,
and at such speeds the model becomes less reliable.

Much more work needs to be done on detailed modeling of
the timing of such VLSI circuits if we are to achieve maximun,
throughput rates in applications like signal processing. Future
work will attemp? to refine our mode!, along the lines of [13]
as an example. We also need to study propagation delay.wluch
was assumed to be relatively small in the examples (4 times
the minimal inverter gate delay 7 for clock distribution. a res-
sonable assumption if the clock lines are metal, for example).
Another important set of interesting problems concerns the
study of the way algorithms, topologies, and layouts interact
with the timing problems considered here. Recent work on
completely pipelined or bit-level systolic arrays is a start in
that direction (see, for example, {2}, [4]-[9], [12]).

ACKNOWLEDGMENT

We are indebted to C. Caraiscos and B. Liu for valuable
comments on the manuscript.

REFERENCES

[1] C. Mead and L. Conway, Introduction to VLSI Systems. Mcenlo
Park, CA: Addison-Wesley, 1980.

{2]) J. V. McCanny, J. C. McWhirter,). B. G. Roberts, D.). Dayv. and
T. L. Thorp, “Bit level systolic arrays.” in Proc. 15th Asilomer
Conf. Gircuits, Syst., Comput.. Nov. 1981,

[3]1 K. B&tcher, A. Lacroin, M. Talmi, and D. Wesscling. “Integrated
floating point signal processor.” in Proc. 1982 IEEE Int. Conf.
Acoust., Speecii, Signal Processing. Paris, I'rance, May 1982, pp.
1088-1091.

[4] P. R. Cappello, and K. Steiglitz, “Digital signa! processing appl:-
cations of systolic algorithms,” CMU Conf. VLSI Syst. Conipuita.
tions, H. T. Kung. B. Sproul'. and G. Steele. Eds. Rockville. MD:
Computer Science Press, 1981.

[§] —. “Bitlevel fined-flow architectures for signal processing.” in
Proc. 1982 IEEE Int. Conf. Qircuits, Compui., Sep. 29-Oct. 1,
1982,

[6) —, **A VLSI lavout for a pipelined dadda multiplier," ACM
Trans. Comput. Sysi., vol. 1, May 1983,

[7) —. “Completely pipelined architectures for digital signal pro-

R L T S
o el Sl

- - - .- . . R N
YA A W T L. P VL.

8/

CAPPELLO etal: OPTIMAL CHOICE OF INTERMEDIATE LATCHING

cessing,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-31, pp. 1016-1022, Aug. 1983,

{8) H. T. Kung. L. M. Ruane, and D. W. L. Yen, “'A two-level pipe-
lined systolic array for convolutions,” CMU Conf. Syvst. Com-
purations, H. T. Kung, B. Sproull, and G. Steele, Eds. Rockville,
MD: Computer Science Press, 1981.

[9] P. B. Denyer and D. J. Myers, *‘Carry-save arrays for VLSI signal
processing,” in VLS 81: Very Large Scale Integration, J. P, Gray,
Ed. London: Academic, 1981.

[10) R. F. Lyon, “A bit-serial VLS! architecture methodology for sig-
nal processing,” in V'LSI 81: Very Large Scale Integration, J. P.
Gray. Ed. London: Academic, 1981.

{11] C.Caraiscos and B. Liu, private communication.

{12] —. “Bit serial VLS! implementations of FIR and IIR digital
filters,” in Proc. 1983 Int. Symp. Circuits Syst., May 1983,

[13] P. Penfield, Jr. and J. Rubinstein, “*Signal delay in RC tree net-
works,” in Proc. Second California Inst. Technol. Conf. VLS,
1981.

{14} C. E. Leiserson and J. B. Saxe, “Optimizing synchronous sys-
tems.” in Proc. 22nd Ann. Symp. Foundations of Comput. Sci.,
October 28-30, 1981.

Peter R. Cappello (M'83) was born in Queens,
NY. on October 18, 1948. He received the B.S.
degrees in mathematics and in computer science
from Pennsylvania State University, University
Park, in 1970. the M.S. degree in electrical engi-
neering and computer science from the Univer-
sity of California, Berkeley. in 1973 (while a
member of the Technical Staff of Bell Labora-
tories), and the Ph.D. degsee in electncal engi-
neering and computer science from Princeton
University, Princeton, NJ, in 1982.

He is now with the Department of Computer Science, University of
California, Santa Barbara, CA.

AR

Andrea LaPaugh (M'81) was born in Mgy
town, CT, on June 26. 1952 Shcreo ooy i,
A.B. degree in physics from Cornell Univorape.
Ithaca, NY, in 1974, and the M.S. und p1
degrees in electrical engineering and con .o
science from the Massachusetts Instyrore oo
Technology, Cambridge, in 1977 and -«
respectively.

She subsequently spent a year as 2 Vi
Assistant Professor in the Department ot ¢ -
- puter Science, Brown University, Provid.r. .
RL Since September 1981 she has been an Assistant Professor jo -
Department of Electrical Engineering and Computer Science. P
ton University, Princeton. NJ.

Dr. LaPaugh is a member of the IEEE Computer Society und :ii.
Association for Computing Machinery.

Kenneth Steiglitz (S'$7-M'64-SM'79-T 81w
born in Weehawken, NJ, on January 30, 1934
He received the B.L.E., M.EE. and Fn2S..D.
degrees from New York University, New York,
NY.in 1939, 1960, and 1963, respectively.

Since September 1963 he has been with, 1t
Department of Electrical Engineering and Cori-
puter Science. Princeton University, Princeten,
-) . NJ. where he is now Professor. teaching and
s\ ;T\ conducting research in the computer and sis-

tems areas. He s the author of /ntroduction to
Discrete Systems (New York: Wiley, 1974y, and coauthor, with €. H.
Papadimitriou, of Combinatorial Optimization: Algorithms and Com-
plexity (Englewood Cliffs, NJ: Prentice-Hull, 1982).

Dr. Steiglitz has served as a member of the Digital Siznal Procesans
Committee of the IELE Acoustics, Speech. and Signal Processing So-
ctety, and as an Administrative Committee member and Award« Chuair-
man of the Society. He is Associate Editor of the journal Nerworks
He is a member of Eta Kappa Nu. Tau Beta Pi, and Sigma Xi. and 1.
1981 received the Technical Achievement Award of the ASSP Sulreny.

@
M3 Notes
R. E. Cullingford
° H. Garcia-Molina
P. Honeyman
R. J. Lipton
o Department of Electrical Engineering and Computer Science
Princeton University
Princeton, New Jersey 08544
® 1. Overview
This is a short collection of notes on the latest results from the Massive
Memory Machine (M3) group. Most of the notes concern the magnitude of the
& speedup possible with massive amounts of physical memory. We are greatly
encouraged by the results recently obtained, and are of course eager to see a real
M3 in operation soon.
In addition, there is growing industrial interest and support for the M® con-
- cept. As we reported earlier, DEC is very enthusiastic about working with us on
a large memory VAX, as well as on the ESP architecture. Furthermore, our
friends at DEC have just told us that DEC will soon be announcing actual pro-
. duct VAX's with 12&8Mb of memory. While this is not the 256-512Mb we are
planning. it is exciting to see that they are thinking along similar lines.
There are also two new groups that are interested in M3. The first is a
group at Bell Labs at Murray Hill. They would like to build an M3 to solve cer-
¢ tain phone company transaction problems that very high speed transaction rates.
These could easily be accomplished on a 1 MIPS M3; but would require a huge
number of parallel processors if the data were stored on rotating disks. They are

........
. N

te® LR LE e T e T B LT et e ® T e T e e . FEERACER] T I T ITT R T VT VTR WE T R YT v Ty T

working with us on plans for a small prototype.

The second group is at IBM Yorktown. They are quite interested in the
whole M? concept; they found out about M3 by reading our recent IEEE publica-
tion. We have just met with Dr. Frank Moss, the project leader, and we are
planning a joint two day meeting in a few weeks in Princeton. We hope that

through such meetings we can work out a strategy for formal cooperation.

1.1. PROLOG Studies

PROLOG is widely touted as the language of choice for expert systems
research and development. Consequently, we view PROLOG as a solid basis for
experiments in applications of massive memory. The early returns are most
encouraging: we are discovering general techniques for speeding up PROLOG
programs, as well as a number of tricks that we can apply in special cir-

cumstances.

1.2. Program Tracing

In order to better understand the data reference patters of memory intensive
programs, we have implemented a software tracing package. It is being used to
study several programs, including the Clay solver, and to predict their running
time on machines of various memory sizes and architectures. The trace package
uses the UNIX debugging facility to interrupt the program under analyvsis after
each instruction execution. When it is interrupted. the data location(s) being
accessed are recorded.

The main problem with this package is that is slows down program execu-
tion considerably, roughly by a factor of 3000. To alleviate this problem, we are
implementing a VAX simulator capable of producing the same trace information.
Preliminary experiments with the simulator indicate that it is 10 times faster
than the original package. Although this still represents substantial overhead,

the new simulator will let us study a wider range of programs.

. - " . . . - - - - Y . . N . . -‘ .J
. . L. . - R LTl K BRI “ . -
. Bmaeelion - P P S S . S T . i T L U e P I T T T SR TN S

...........
''''''''
.....

.

B e e S e e e T T D A D T A G MR, S i W Sl A T T O N e I A e

1.3. ESP Straw Man Prototype

We have started implementing a preliminary version of a ESI” izachine. The
goal is not to create an operational system, but to gain experience with the ESP
architecture and to identify some of the practical problems that may arise in a

full implementation.

We have acquired two 8086-based microprocessor systems. Each CPU talks
to its local memory via a multibus. Each CPU is also connected to a pair of disk
drives. We have designed and wire-wrapped two simple ESP controllers; each
controller sits on one of the multibuses. The controllers are tied together by a

simple broadcast bus. The controllers make no provisions for failures or errors.

We have started debugging the ESP controller hardware, and are only begin-
ning to design the software that will run the machines. Even at this early stage,
our implementation effort has already turned up several important issues that
had been overlooked in the original paper design. These issues include system
startup, I/O and interrupt handling, periodically refreshing dynamic memory.
and queueing data words at each ESP controller; we are now studying these
issues. Some of them can be safely ignored in our prototype (e.g., memory
refresh); to cope with others, we are adding more capabilities to our ESP controll-

ers.

1.4. M? Performance on Database Benchmarks

Two recent papers have compared the performance of several database
machines, and we decided to evaluate the performance of an M*® database
machine on the same queries that were used for the benchmarks. Our prelim-

inary results are given in an attached report.

In summary, our results clearly show that an M?® that can hold all of the
database in fast memory can outperform the database machines considered. The
speedups range from a factor of 7, to a factor of 27,000, depending on the
assumptions made and the sample queries analyzed. These results must of course
be treated with caution. but they do illustrate that memory can be an extremely

useful resource for database applications.

.

T AT
.' -" ‘- '- -
"’y Y4

- o . . . I N CO T R . Wt T
R I P . L O S TR T T Dl S Do 9, T U L P I U L L P SR Py

2. Massive Memory vs. Massive Parallelism

2.1. Introduction

A common ‘“folk principle” is that massive parallelism is the only way to
vastly speed up computations. In contrast, we will show that there are important
classes of computations which can be greatly sped up only by massive amounts of
physical memory. Thus, for these computations an M? will vastly outperform

any paralle]l machine!

On the face of it our claim seems absurd. Don’t parallel machines always
dominate sequential machines such as an M3? In order to understand this
apparent paradox let us examine the standard argument more carefully. Assume
that some task has an algorithm A that takes time T(A,n) for inputs of length n.
Then potentially p parallel processors can run this algorithm in time T(A.n)/p.
Of course this is the upper limit on the potential performance of p parallel pro-
cessors: in practice fully linear speed up is rare. llowever, to make our point
about the power of memory over parallel processor even more dramatic, let's

assume that such speedup is always possible.

Since T(A.n) > T(A.n)/p for any p. how can parallel processors ever lose to
a sequential machine such as M?? The answer is that there may be a new algo-
rithm B for which T(B,n) < T(A,n)/p for any reasonable p. Moreover, this algo-
rithm may require in an essential way vast amounts of random access memory;
thus. this algorithm cannot be executed on the p parallel processors for lack of
physical memory. In this way it is possible for an M2 to greatly outperform any
collection of parallel processors. Note, we are not saying that memory is always
better than processors, this is false; but then so is the folk principle that parallel
processors are always better than sequential machines. We are simply pointing
out that there are memory intensive computations that benefit much more from

memory than from processors,

A possible counter to our argument is: why can't the parallel processors have
enough space to use the better algorithm? Of course in principle they can. The
kev point is that on many interesting problems we will not be able to afford both

parallel processors and massive amounts of memory. On problems that

« - - - . N . L T . A : R
NP o : -t . I A IR S .
S e e e AR

fundamentally require memory, not processors, the parallel processors will be

forced to run a slower algorithm, and hence be outperformed by an M3,

We now demonstrate our claims with two examples from PROLOG. an
important language for a wide variety of non-numeric computations. There is
currently an intensive international effort to use parallelism to speed up PRO-
LOG. It may therefore be interesting to see how massive amounts of memecry

can be used to achieve vast speedups in PROLOG.

2.2. Recursion

The first application of memory is conveniently introduced by way of a sim-
ple PROLOG example:

path([AIX].[B]Y]) :- edge(AB).

path([-|X].Y) :- path{(X\Y)).

path(X.[-]Y]) :- path(X.Y).
(Here edge(.) is some relation that is defined by other rules.) Path(X,)Y) checks
the two lists X and Y to see if there is an element in the first list with an edge to
an element in the second list. Intuitively, we would expect that this process
should take time quadratic in n, the total number of elements. However, on any
standard PROLOG it takes exponential time, because PLL{LOG repeatedly re-
evaluates subgoals. While there are at most quadratically many subgoals, they

are evaluated exponentially many times.

For those unfamiliar with PROLOG's evaluation scheme, let us examine the
computation of path(X,Y) in more detail. Here X is a list z;. 7, and Y is a
list ;. .. .,y. with k+{=n. Path(X)Y) is computed as follows:

(1) If, either list is empty then path(X,Y) is false.

(2) Next. if edge(r;. y;) is true then path(X.Y) is true.

(3) Finally, if either path(X",Y) or path(X.Y’) are true then so is path(X,Y).

Here X' is equal to 7, . . ., ryand Y'is equal to y,. . . .,y
Note, the last part of the computation is the key to the use of repeated subgoals.

The call to path(U.V) where U is equal to 7, . . . ,7, and V is equal to y,. . . ., v

e
occurs exactly [H’fj’l" times.

.i
P AP VP T S Y Y i S L

(,

‘s

\d

M N S A I M s it A N . A /A e A Cal I A A AR M I A A AT AR AP e S A R A A el Sl St Sl Sl

Let us now compare the performance of a set of p parallel processors on this
example and an M3. The p parallel processors take 2"/p time since the usual
PROLOG implementation checks that many subgoals on this problem. On the
other hand, an M3 can use the following strategy: cache all subgoals and use
table lookup instead of re-evaluating subgoals. This strategy leads to an algo-
rithm that takes order n°® time, since each subgoal is checked exactly once. Thus,
even for modest sized problems (n equal to 40) the number of parallel processors

required to perform as well as the M® is on the order of one billion!

A final word about this example: it is of course always possible to create
examples that make any approach look good. We feel, however, that using
memory to avoid repeated re-evaluation of subgoals is a fundamental technique
to speed up PROLOG. Exponential growth cannot simply be waved away: there
are many natural PROLOG examples that lead to the same combinatorial explo-
sion. A PROLOG machine with a huge memory to cache millions or even billions

of subgoals would be extremely powerful.

2.3. Table Lookup

A second critical use of memory to speed up PROLOG relies on the way the
PROLOG data base is searched. In order to reach a goal PROLOG searches its
rules for the first one that matches the current goal. While there are a number of
ways to speedup this search, the fastest one appears to use large amounts of
extra memory. The idea is simple: in additional to storing the rules, we store
indices (inverted lists) that make the search very fast. With the proper data
structures a constant time search sndependent of the size of the data base is pos-
sible. Clearly, no number of parallel processors could outperform such an imple-
mentation.

We have performed a number of experiments to validate this claim. Our
experiments so far have consisted of comparing the standard implementation of
PROLOG with ones that use the data structures described above. One test pro-
gram is a simple PROLOG program that computes the transitive closure of a

directed graph:

........

(s

AT R N QRN R R S (P A Bt M Bt St 2t SR o § 8% i

reach(X)Y) :- edge(X,Y).
reach(X,Y) :- edge(X,Z), reach(Z,Y).

(Again, edge(,) is a relation that is defined by other rules.) Table I contains the

actual results of experiments on a VAX 11/750. The speedups are dramatic: even

on modest sized graphs we get several orders of magnitude speedup. The reason

for these large speedups is that the parallel approach takes order n®/p time and

the memory intensive M® approach takes only order n time. Since n reflects the

size of the data base, the potential for speedups large data bases is immense.

Number of Edges | Number of Queries | PROLOG | M3 - PROLOG

(secs) (secs)

78 156 224.3 0.5

60 380 252.1 1.0

100 380 3525.7 1.2

100 &70 3700.8 2.8

120 1190 18375.8 4.8

100 2450 6450.6 9.8

165 2450 ? 12.2

TABLE 1

Results of comparison of PROLOG and M3-based PROLOG implementation.
All times in VAX 11/750 seconds.

il

R o 3

JER A S A o Ve S M S oS o S el oY

B e e A A i R

-8-

3. M? Performance on Certain Database Benchmarks

In recent papers by Hawthorn and DeWitt [1], and by Hillyer, Shaw, and
Nigam [2], the performance of sev-ral database machines was compared. In this
note, we study the performance of an M3 database machine on the same queries

under comparable assumptions.

A M3 is not a “conventional” database machine, so we must clarify a few
points before starting our comparison. The basic premise of the M® project is
that fast, semiconductor memory will soon be inexpensive enough so that many
important databases (e.g., dozens of gigabytes) will fit inside main memory.
When this occurs, it may be more cost effective to build a conventional machine
with a massive memory, rather than building a machine with parallel search ele-
ments but with insufficient memory to hold the entire database. Thus, in our
comparisons we will assume that the database fits within the M3 memory, but it
does not fit in a machine where resources were invested in parallel processing ele-

ments. The memory size / processor speed tradeoffs are discussed in detail in [3].

The query times in [1,2] are divided into query processing (or compiling)
time, the actual database search time, and the time to transmit the answer back
to a host machine. In this note we only study the database search time because
the other times will be roughly the same in M® and other database machines.
Furthermore, we compare the M3 only to the NON-VON [2], the fastest of the

database machines.

The M? processor speed plays a very important role in the evaluation. To
be conservative. we assume that the M® has a 1 MIPS processor. However, at
the end of this note we briefly consider the effect of a 10 MIPS processor, noting

that this value is still very reasonable.

3.1. Query #1

This query is a select over a relation with 1,110 tuples. Each tuple is 127
bytes long. The search key for the select is 12 bytes long. The answer consists
of 3 tuples, but only 21 bytes of each one are required for the answer. The
NON-VON search time for this query is between 0.0827 (best case, data on disk)

and 0.1067 (worst case, data also on disk) seconds. (Using the parameters of [2].

-9-

this is OVIO + BCOM + DAVAC + DROT))

For M3, the search time depends on the data structures available for the
relation. For a sequential scan, we must examine each of the tuples. Assuming
that it takes 10 machine instructions to examine a tuple (the key is 12 bytes or 4
words), this will take 0.011 seconds on a 1 MIPS machine. If a binary tree exists
for the relation (and one of the premises of M3 is that there will be enough
memory to hold auxiliary structures for the important search fields), the time can
be reduced considerably. The search would involve going down the tree (11 levels
maximum and 10 instructions to examine each node), and extracting pointers to
the three matching records (20 instructions), for a total of 130 microseconds. If a
hash table exists, we would simply need to hash on the key and extract the

pointers. Assuming 10 instructions per pointer, this would take 30 microseconds.

In summary, comparing against the best NON-VON times, the M3 could
provide anywhere from a 7 fold speedup (sequential search for M3) to a 2700 fold
speedup (hash table lcokup for M3). It is interesting to note that if we assume
that NON-VON has all of the data in memory (which may not be fair since we
aie giving NON-VON both a large memory and parallel search elements), it still
does not beat an M3 that uses hashing. In this case, both search times are com-
parable (40 microseconds for NON-VON; 30 for M3).

3.2. Query #2

The second query is a select of one relition, followed by a join of the result
with a second relation. The first relation contains 282 (52-byte) tuples. The
selection vields 22 tuples. The second relation contains 11,436 (127-byte) tuples.
The join field is 20 bytes long. and 422 tuples are produced by the join. The
NON-VON search times for this query are 0.336 (best case, data on disk) to

0.4667 (worst case, data also on disk) seconds.

The M3 search times again depend on the data structures available. If none
are available, we must first scan the first relation (282 tuples at 10 instructions
per tuple). For cach of the matching 22 tuples, we must set up a sequential scan
of the second relation (20 instructions, say), and then scan (11,436 tuples at 15

instructions each). (Each check takes 15 and not 10 instructions as we had

Y

- 10 -

assumed earlier because the join field is longer.) For each of the resulting 422
tuples, suppose we perform 10 additional instructions. Adding this up we obtain

about 3.8 million instructions, or 3.8 seconds on a 1 MIPS machirne.

However, if we construct a hash table to aid in the join we can reduce this
time considerably. If we assume it takes 20 instructions to insert the key of each
tuple of the second relation into a hash table, then 228 720 instructions will build
the table. To check if each of the 22 keys resulting from the select exist in the
table takes only 22 times say 20 instructions. As before, we include 2820 instruc-
tions to do the initial select, plus 4220 instructions to process the resulting tuples.

This gives us a total search time of 0.24 seconds.

If search structures already exist for the second relation, then of course the
time can be further reduced. For example, if a binary tree exists for the join
field, the join involves looking up 22 keys (14 levels of the tree times 15 instruc-
tions at each node). Adding this to the select time and the time to process the

422 results, we get a total search time of 0.012 seconds.

In summary, without auxiliary data structures M3 will be about 11 times
slower than NON-VON (best time). However, if M2 is allowed to build its data
structures, it can be 1.4 times faster than NON-VON. If the structures are

already in place, the speedup is greater: 28 times.

3.3. Query #3

The last query examines a relation with 194 (256-byte) tuples. The values in
a given field (encumb, 4 bytes) are to be added for each group of tuples that
match in a second field (acct-fund, 8 bytes). There are 17 unique values of the
acct-fund fields. The NON-VON search times are 0.088 (best case, data on disk)

and 0.11 (worst case) seconds.

On an M? we would always have to scan the entire relation, i.e., 194 tuples
times say 10 instructions per tuple. The results can be collected by building a
linked list, where each element contains the current sum for a given acct-fund
value. To add each new value, we must scan the list to find the proper record.
Since there will be at most 17 records, a scan will take on the average 9 records,

at say 10 instructions each. Thus, each insertion takes 90 instructions, and this

v}

....... R e P TS o S

-11-

must be multiplied by the 194 tuples that exist. The total time is then 0.019

seconds.

Since there are so few records in the linked list of partial sums, changing this
data structure does not bring large improvements. For example, with a B-tree (5
levels maximum), each insertion will take roughly 50 instructions, for a total time

of 0.012 seconds.

Comparing these numbers to the NON-VON times, we see that M3 is a fac-

tor of 4 to 7 times faster on this query.

3.4. Conclusions

Our rough estimates clearly indicate that M® can provide significant specd-
ups for the sample queries of [1.2]. To summarize the results, we present the fol-
lowing table that gives the M2 speedup (i.e., the NON-VON search time divided
by the M3 search time) for the case where search structures and data are avail-
able in M3 memory, and data is on di<% in NON-VON. We also give the
speedup attainable if the M2 processor ran at 10 MIPS.

M3 Speed::p

1 MIPS Processor | 10 MIPS Processor

Query #1 2,700 27,000
Query #2 28 280
Query #3 7 70

As Hillyer, Shaw, and Nigam [2] state, “There are hazards in attempting to
deduce the relative merit of alternative architectures based on ‘paper and pencil’
analysis of performance on a small number of specific problems with specified
data.” We certainly agree with them: the results we have presented must be
treated with caution. However, we do feel that they illustrate that memory can

be an extremely uscful resource and can provide impressive speedups, even when

\]
.

"y v!—r?vr‘vywr ’A',","v"r"'r.n o f

the competition is a powerful database machine like NON-VON.

References

[1] P. B. Hawthorn and D. J. DeWitt, ‘“Performance Analysis of Alternative
Database Machine Architectures,” IEEE Transactions on Software Engineer-
ing. Vol. SE-8, Num. 1, January 1982.

[2] B. K. Hillyer, D. E. Shaw, and A. Nigam, “NON-VON's Performance on
Certain Database Benchmarks,” Unpublished Technical Report, Columbia
University, 1984.

[3] H. Garcia-Molina, R. Cullingford, P. Honeyman, and R. Lipton, “The Case
for Massive Memory,” Unpublished Technical Report, Princeton University,
1984.

P
e

e T e 0., S R - . R Y I - .« PR
pacn Cala b P LS. PR, USSR W ST, LTS VU Ry PR ATV TG/ TP WA WL 20 W T PRI

I..‘
I".-

o

0k R JodrRdt)

